
Two-Component Horizontal Aerosol Motion Vectors in the Atmospheric
Surface Layer from a Cross-Correlation Algorithm Applied to Scanning Elastic

Backscatter Lidar Data*

SHANE D. MAYOR, JENNIFER P. LOWE, AND CHRISTOPHER F. MAUZEY

Department of Physics, California State University Chico, Chico, California

(Manuscript received 26 December 2011, in final form 11 April 2012)

ABSTRACT

Two-component horizontal motion vectors of aerosol features were calculated by applying a cross-

correlation algorithm to square image blocks extracted from consecutive pairs of elastic backscatter lidar

scans. The resulting vector components were compared with corresponding horizontal wind components from

tower-mounted sonic anemometers located at the center of the image blocks. In the analysis 180 245 pairs of

vectors derived from 75 days of field data collected between 19March and 11 June 2007 were used. Examples

of time series comparisons from 4-h periods during light, strong, and changing wind conditions are presented.

Mean signal-to-noise ratios (SNRs) of the block backscatter data, maxima of the cross-correlation functions

(CCFs), observed wind speed, and turbulent kinetic energy (TKE) were also calculated for each velocity

component comparison. The correlation between the lidar-derived motion components and sonic ane-

mometer wind components tends to be highest during light wind conditions with low TKE. An empirical

relationship is presented that enables the elimination of vectors that are likely to be significantly different than

the anemometer measurement. When applied to the entire set of scans available, this quality control (QC)

method increases the correlation between the two forms of measurements. Finally, the cross-correlation

algorithm and QC method are applied to a mesh of locations over pairs of scans. Two examples of two-

dimensional and two-component vector flow fields are shown. In one case, the flow field reveals a rotational

circulation associated with a vortex and, in the other case, convergence and transport near the leading edge of

a density current front.

1. Introduction

Remote measurements of the vector wind field in the

lower atmospheric boundary layer from ground-based

platforms in the range of 1–20 km away from areas of

interest are likely to be of value in several applications.

Examples include wind resource assessments (especially

offshore), very short-term wind predictions near estab-

lished wind farms, initial transport and hazardous ma-

terials dispersion observations (i.e., over nuclear power

and industrial chemical sites), wind shear and wake

vortex detection near airports, and meso- and micro-

scale meteorological research. Doppler lidars provide

high-quality direct measurements of only the radial

component of motion (Mann et al. 2009). However,

in many of the above applications it may not be prac-

tical to 1) collect 3608 azimuth scans or assume hori-

zontal homogeneity of the atmospheric boundary layer

(Browning and Wexler 1968), or 2) combine radial

measurements with numerical flow retrieval models to

derive two or more wind components from a single

Doppler lidar (Newsom and Banta 2004a,b). The use of

two Doppler lidars separated by distances similar to the

range of interest can provide multiple wind components

over a common area (Newsom et al. 2005), but using two

instruments increases the cost. Instead, a direct obser-

vation of two or more components of the vector wind

field from scanning over a sector with a single instru-

ment is desired. In this case, the application of the cross-

correlation technique to aerosol backscatter lidar images

may hold significant value.
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The cross-correlation technique has been applied to

aerosol lidar data several times previously (Eloranta

et al. 1975; Sroga et al. 1980; Kunkel et al. 1980; Sasano

et al. 1982; Hooper and Eloranta 1986; Kolev et al. 1988;

Schols and Eloranta 1992; Piironen and Eloranta 1995;

Mayor and Eloranta 2001). The most recent of these pa-

pers (Mayor and Eloranta 2001) showed two-component

vector fields with 250-m horizontal resolution over

areas as large as 60 km2. These vectors, however, were

the result of averagingmany cross-correlation functions

over time, up to 41 min in one case. Furthermore, the

lidar system used in Mayor and Eloranta (2001) was not

eye safe and the vectors were not verified with an in-

dependent wind measurement.

In the present work, no temporal averaging of the

cross-correlation functions was performed in order to

evaluate the ability of the algorithm tomeasure the wind

from pairs of consecutive scans. The data were collected

with an eye-safe elastic lidar operating at 1.54-mm
wavelength (Mayor et al. 2007), and an instrumented

tower intersected the nearly horizontal lidar scan sur-

face. The remote and in situ data were collected nearly

continuously over 3 months in the atmospheric surface

layer over an agricultural area.We avoid comparison of

mean remote and in situ velocity components because

of uncertainty in the precise altitude of the lidar beam

at the tower and frequent strong vertical wind shear

profiles. Instead, this paper focuses on documenting the

variability of velocity components resulting from pairs of

consecutive scans.We conclude by showing two examples

of two-dimensional flow fields that result from the ap-

plication of the algorithm to the entire scan area.

2. Experiment

The lidar system used in this experiment, known as

Raman-shifted Eye-safe Aerosol Lidar (REAL), is de-

scribed by Mayor and Spuler (2004), Spuler and Mayor

(2005), and Mayor et al. (2007). It is a ground-based,

scanning, elastic backscatter lidar operating at 1.54-mm
wavelength. Table 1 lists the specifications of the system

as configured for the experiment.

The data used in this study were collected between 19

March and 11 June 2007 near Dixon, California, during

the Canopy Horizontal Array Turbulence Study (CHATS;

Patton et al. 2011). The REAL was located 1.61 km di-

rectly north of the National Center for Atmospheric

Research (NCAR) Integrated Surface Flux Facility

(ISFF) 30-m vertical tower (VT; see Fig. 1). The VT was

located inside an 800 m 3 800 m orchard of 10-m-tall

walnut trees. The VT was located 100 m from the

northern edge of the orchard in order to maximize the

fetch over the canopy during the prevailing southerly

flow. The VT supported 13 Campbell Scientific CSAT3

3D sonic anemometers of which 5 were located above the

tree tops at 12.5, 14, 18, 23, and 29 m above ground level

(AGL). The flat terrain in the vicinity of the experiment,

relatively short height and uniformity of the orchard, and

absence of additional obstructions between the lidar and

the orchard enabled nearly horizontal atmospheric cross

sections [hereafter referred to as plan position indicator

(PPI) scans] that were collected over a wide area sur-

rounding the orchard. The laser pulses, which were pro-

jected from REAL at a height of 4.2 m AGL, passed

above the tops of the trees in the orchard and intersected

the VT at a height of approximately 18–20 m AGL. This

corresponds to a slope of 8.6 m km21. Therefore, the PPI

scans were within the atmospheric surface layer and the

resulting cross sections were essentially planar and hori-

zontal. The laser beamat the pointwhere it is emitted from

the lidar is 6.6 cm in diameter and has a half-angle di-

vergence of 0.12 mrad. This results in a beam diameter of

45 cm at 1.61-km range and 1 m at 4-km range. The laser

pulse duration is 6 ns, which corresponds to 1.8-m length.

We estimate that the majority of PPI cross sections

intersected the VT between 18- and 20-m height (see

Fig. 2). This estimate is based on observations of hard-

target reflections from the horizontal span of VT guy

wires. No attempt was made during the experiment to

observe the beam on the tower with an infrared viewer.

Furthermore, the height of the lidar beam at the VT is

likely to have changed over time resulting from drifts

and adjustments in the attitude of the lidar trailer.1

TABLE 1. Specifications of the lidar system.

Wavelength 1.543 mm
Pulse energy 170 mJ

Pulse rate 10 Hz

Pulse duration 6 ns

Beam diameter at lidar 66 mm (1/e2 points)

Beam divergence 0.24 mrad (full angle)

Telescope diameter 40 cm

Receiver field of view 0.54 mrad (full angle)

Digitizer speed 100 MSPS*

Digitizer range 14 bits

Detector type 200-mm InGaAs APD**

* Megasamples per second

** 200-mm-diameter indium gallium arsenide avalanche photodiode

1 Because of the trenching and flooding of a nearby irrigation

ditch after the installation of the lidar, one side of the lidar trailer

occasionally stood in mud while the other side was on dry soil. Staff

attempted to compensate for the sinking of the one side by period-

ically adjusting the leveling system. However, measurements and

records were not kept. Note: a 1-mm change in the height of one side

of the trailermay have resulted in a 0.5-m change in the height of the

beam at the tower.
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At an azimuthal scan rate of 48 s21 and a pulse repe-

tition frequency (PRF) of 10 Hz, the distance between

laser pulses in the east–west direction at the range of the

VT was 11 m. The relatively narrow profile of the

tower,2 small diameter of the laser beam, and distance

between pulses at the range of the tower resulted in

intermittent hard-target returns. The beam steering unit

operated independently of the 10-Hz transmitter and, as

a result, laser pulses were not always projected at the

same azimuth angles in consecutive scans.

The aerosol backscatter performance of the lidar has

an impact on the vectors derived from the backscatter

data. For example, a low performance system may not

detect variations in backscatter intensity and could re-

sult in an absence of features to track. For this study,

a two-channel polarization-sensitive receiver was used

(Mayor et al. 2007). This arrangement of hardware splits

the total backscatter power into two detection channels,

thereby increasing the amount of electronic noise by
ffiffiffi
2

p
compared to that of an equivalent single-channel de-

tection system. However, dividing the signal into two

channels enabled better quantization of the signal. This

configuration likely resulted in a higher signal-to-noise

ratio (SNR) in the first few kilometers of range, but a

lower SNR at far distances when compared with a single-

channel system.This issue and other systemvariables, such

as transmitted laser pulse energy and noise-equivalent

power of the photodetectors, have a significant impact on

the SNR of the backscatter data, and therefore affect the

quality of the retrieved velocities. Therefore, we docu-

ment the SNR performance.

The SNR of the backscatter data was calculated by

first computing the standard deviation (sb) and mean

(Sb) of 375 digitizer samples recorded during the

3.75 ms prior to the discharge of each laser pulse; sb is

a measure of the intensity of the electronic noise in the

detection system and Sb is proportional to the back-

ground intensity. Then, for each element in the wave-

form, the background is subtracted and the result is

divided by the noise value, as shown in Eq. (1), below:

SNR(r)5
S(r)2 Sb

sb

. (1)

This procedure is applied to the return of each pulse

individually and the resulting arrays are not averaged

over time. Figure 3 shows the frequency distribution of

single-shot SNR as a function of range for a subset of

208 905 laser pulses (1 pulse per scan) that were directed

nearly horizontally over the center of the CHATS ex-

perimental area throughout the approximately 3-month

period. It shows that individual pulses in the range of the

experimental area between the 1.1- and 2.1-km range

typically result in SNRs of approximately 100 at 1.1-km

range and decrease to approximately 20 at 2.1-km range.

The broad range of SNRs results from variability in both

the atmosphere and the instrument performance. For

example, the transmitted laser pulse energy decreased

FIG. 1. Plan view of the experimental area. The yellow shaded

regions from 1508–2108 and 1758–1858 azimuth represent the areas

covered by wide and narrow PPI scans, respectively. The VT was

located 1.61 km directly south of REAL. The white squares cen-

tered on the VT represent the outer edges of the image blocks

extracted from the gridded PPI scan data that were used to com-

pute motion vectors via the cross-correlation technique.

FIG. 2. Diagram showing the approximate altitude and diameter of

REAL laser pulses with respect to the treetops and the vertical tower

at CHATS. This diagram is an east–west cross section looking either

toward or away from the lidar. Laser pulses from one scan at an azi-

muthal scan rate of 48 s21 are shown (shaded circles). At this scan rate,

the pulses were spaced 11 m apart at 1.61-km range from the lidar.

2 The central column of the tower was 32 cm wide. Guy wires

0.47 cm in diameter were attached to the tower at four heights on

the tower. Guy wires from 7.9 and 18.8 mAGLwere anchored into

the ground 13.4 m from the tower base. Guy wires 23.8 and 32.0 m

AGL were anchored into the ground 26.8 m from the base.
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slowly (2.5–5.0 mJ day21) during operation until opera-

tors either increased flash lamp voltage (every 5–10 days)

or replaced the flash lamps (approximately every

21 days). Figure 7 of Spuler and Mayor (2007) shows

the transmitter performance as a function of time for

the entire CHATS experiment. Also contributing to the

range of SNR is the variability of the atmosphere. The

concentration and microphysical characteristics of the

aerosol fluctuate over time. In addition to changes in air

mass, aerosol plumes resulting from local agricultural

activities pass through the scan area and result in sub-

stantial perturbations in SNR. Therefore, the distribu-

tion shown in Fig. 3 represents the broad range of SNRs

for the scans used to extract aerosol motion vectors re-

ported herein.

3. Algorithm

The algorithm applied to the backscatter data to de-

rive two-component aerosol motion vectors follows that

described by Schols and Eloranta (1992). Lidar scans are

composed ofmultiple ‘‘beams,’’ with each beammade of

uniformly spaced backscatter samples; the beams form

a polar grid of samples with the lidar at the origin. Each

beam is produced by calculating and subtracting the

mean background from its waveform, multiplying the

waveform by the square of the range to remove the ap-

proximately one-over-range-squared dependence of the

raw signal, and converting the waveform to decibels.

Each beam then undergoes low-pass and high-pass me-

dian filtering to remove single-point outliers and large-

scale features, such as the effects of attenuation and the

inability to normalize for shot-to-shot laser pulse energy

variations, respectively. For the results shown here, the

low-pass filter length was set to 7 points corresponding to

10.5 m and the high-pass filter lengthwas set to 333 points

corresponding to 500 m.3

After processing the beams of a scan as described

above, the scan data are projected onto a uniform rect-

angular grid using bilinear interpolation. The grid is ori-

ented with the abscissa directed positive to the east and

the ordinate positive to the north. In this study, grid

spacing of 4, 6, 8, 10, and 20 m were tested. In addition to

the processed backscatter data, the time of each pulse at

millisecond resolution and the range-dependent SNR are

projected onto grids of the same dimensions and resolu-

tion, enabling this information to be easily and precisely

extracted from the same regions of the backscatter data

that are analyzed by the cross-correlation technique. A

temporal median image is computed based on all of the

filtered PPI scans with elevation angles greater than an

amount sufficiently large to prevent hard-target reflec-

tions from the treetops and within the time span of each

raw data file. A single raw data file typically contains

FIG. 3. Frequency distribution of single-pulse SNR of the aerosol backscatter data as

a function of range resulting from a subset of 208 905 laser pulses that were directed almost

horizontally and toward 1798 azimuth throughout the 3-month-long CHATS experiment. The

vertical dotted lines at 1.1- and 2.1-km range correspond to the northern and southern edges of

the largest (1 km2) block used to compute horizontal velocity vectors. The ISFF VT was lo-

cated at 1.6-km range.

3 The transmitted beam falls entirely within the receiver’s field

of view by approximately 500-m range.
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dozens to hundreds of scans and includes data spanning

periods fromminutes to more than an hour in most cases.

Next, subsets of the gridded data are extracted in

square regions corresponding to the four blocks shown

in Fig. 1. For this work, vectors were calculated from

250 m 3 250 m, 500 m 3 500 m, 750 m 3 750 m, and

1 km 3 1 km blocks to investigate the effect of block

size on the motion vectors. Blocks of the same size and

position and those from pairs of consecutive scans are

used to calculate each motion vector. Histogram equali-

zation is applied to each block (Schols and Eloranta

1992). Two-dimensional cross-correlation functions

(CCFs) are computed using fast Fourier transforms

(FFTs) and the Wiener–Khinchin theorem.

The resulting CCFs have resolutions equal to the grid

spacing. Therefore, at this stage of the process, the mea-

surement of aerosol feature displacement is limited to

the grid spacing and the quantization of velocity esti-

mates is limited to the grid spacing divided by the time

between scans. To improve the velocity resolution, a two-

dimensional polynomial based on the 5 3 5 set of points

centered on the peak of the CCF was calculated as de-

scribed by Piironen and Eloranta (1995). The location of

the peak of the numerically fit function (with respect to

the coordinate system of the CCF) corresponds to the

displacement caused by the predominant aerosol feature

movement within the block area over two scans. While

the peak refinement does reduce the quantization of

the displacements, we found that it does not eliminate

it entirely.

The velocity is determined by dividing the displace-

ment by the time between scans. In addition to the above,

the average lidar SNR of the block regions is computed

for data analysis. These regions often contain a small

number of pixels resulting from hard-target reflections

from the vertical tower and a grove of nearby trees that

were substantially higher than the orchard canopy.4

However, the number of pixels influenced by these hard-

target reflections is very small compared to the total

number of pixels in the blocks, and we found that they do

not significantly affect themean SNR.5 Temporal median

filtering reduces the biasing effects of these stationary

features in the images.

The horizontal wind components from the sonic an-

emometer data at 18 m AGL on the VT were used as

a standard reference. The nature of the sonic anemom-

eter measurement is very different from the lidar mea-

surement. Sonic anemometer velocity measurements

are representative of the airflow in a small volume in

space and 60 Hz in time. The lidar vectors are based on

the drift of macroscopic aerosol features over relatively

large areas and are relatively sparse in time (once every

10–30 s) in comparison to the sonic anemometer data.

Therefore, substantial time averaging of the sonic ane-

mometer wind components is required to make a com-

parison with each aerosol motion vector.

As a first guess for a suitable time interval over which

to average the sonic anemometer data, we chose to be-

gin the averaging interval when the lidar beam enters

the block area on the first scan and end the averaging

interval when the lidar beam exits the block area on the

second scan. Therefore, each block size has a slightly

different averaging duration (larger blocks result in

longer averaging times). Figure 4 depicts how the sonic

anemometer time series data are averaged relative to

the lidar scans. To investigate the effect of varying the

interval over which to average the sonic anemometer

data, we expanded and contracted the duration of the

intervals. No significant improvement was found.

REAL operated at CHATS with a constant PRF of

10 Hz. However, all other parameters controlling the

scans were variables that could be altered in order to

optimize the scans to achieve a variety of experimental

objectives, some of which were related to the direction

of the flow. The variables include the angular scan rate,

the angular width of a scan, and the sequence of scan

types to be performed. In summary, a large number

(approximately 200 000) of the collected PPI scans were

intended to reveal a broader view of the experimental

area. These are called ‘‘wide’’ and ranged from approxi-

mately 1508 to 2108 azimuth and were performed at a rate

of 48 s21. Another large percentage of the PPI scans

(approximately 75 000) were termed ‘‘narrow’’ and were

intended to probe the finescale structure and motion of

the atmosphere in the immediate vicinity of the tower.

The narrow scans ranged from 1758 to 1858 azimuth.

A majority of the narrow scans were collected during

gentle southerly winds in an effort to observe canopy-

scale turbulent coherent structures over the orchard.

Changing scan strategies during the experiment resul-

ted in a variety of time periods between scans. The most

frequent time between scans (dt) was 30 s. The second

most frequent was 17 s. Scans with update periods of 45

and 10 s were also collected occasionally. In summary,

4 The associated hard-target returns from these trees were lo-

cated in a region near 1.50–1.65 km south and 0.35 km west of the

lidar.
5 Given a pulse rate of 10 Hz, an angular scan rate of 48 s21, and

a digitizer speed of 100 megasamples per second, the number of

data points in the native spherical coordinate systemof the lidar fall

into blocks that are 250 m 3 250 m, 500 m 3 500 m, 750 m 3
750 m, and 1 km3 1 km, and centered on the VT are 3692, 14 885,

33 650, and 60 222, respectively. After interpolation to a Cartesian

grid with spacing of 10 m in both east–west and north–south di-

mensions, the number of points (or pixels) in the blocks are 625,

2500, 5625, and 10 000, respectively.
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the population of PPI scans available for analysis has a

wide variety of associated parameters (dt, elevation an-

gle, angular width, angular resolution) as well as atmo-

spheric conditions in which they were collected. This

complicates the analysis. However, it also provides an

opportunity to explore the effects of adjustable parame-

ters so that they can be optimized for best results in future

experiments.

4. Time series comparisons

Of the approximately 275 000 PPI scans collected

during CHATS, our analysis used only the vectors re-

sulting from a subset of approximately 180 000 PPI scans.

A large number of PPI scans were contaminated by in-

termittent reflections from top foliage of the orchard

trees as a result of inadvertently setting the elevation

angle too low. Our analysis excludes vectors that resulted

from partially filled blocks or blocks with substantial

contamination from hard-target returns.

Time series plots of the velocity components, such as

those shown in Figs. 5–7 were created for the entire

dataset. We have examined them all and concluded that

the correlation between lidar and anemometer velocity

components varies substantially and depends on a num-

ber of factors. In this section, we present examples of time

series of the velocity components with good agreement

but from different meteorological and wind conditions.

There are also many examples of poor agreement.

However, poor agreement can be easily described as

noisy results and there is little value in showing it. We

conclude this section by showing the results of a statistical

analysis that includes all 180 245 vectors.

a. Light and variable wind example

Figure 5 shows the velocity components derived from

the lidar data (black dots) and the averaged sonic ane-

mometer data from five heights on the VT during

a weakly stable 4-h period (1000–1400 UTC 26 March

2007) with light and variable winds. For this case we

present the results from application of the 250 m3 250 m

block size to show the skill of the cross-correlation algo-

rithm with the smallest of the four block sizes tested.

Larger block sizes result in smoother time series. The

scan update rate was 17 s during this period.

The mean wind speed during this 4-h period, accord-

ing to the sonic anemometers on the VT, ranged from

1.3 m s21 at 12.5 mAGL to 2.25 m s21 at 29 m.Themean

turbulent kinetic energy ranged from 0.04 to 0.08 m2 s22

among the five sonic anemometers. The mean gradient

Richardson number was 0.02, indicating weak static sta-

bility. Themean lidar SNRover the 250 m3 250 mblock

ranged from 25 to 100, with a 4-h mean of 78. CCF

maxima ranged from 0.1 to almost 0.9 with a mean of

0.4. Particular attention, however, should be taken to

notice the very good correlations between perturba-

tions in the lidar velocity components and those from

the anemometers. Linear correlation coefficients from

FIG. 4. Visual depiction of how anemometer time series data were averaged for comparison

with the vectors derived from lidar scans. This example considers a series of four consecutive

PPI scans that result in three vectors. The anemometer data are averaged over the periods

corresponding to when the lidar’s beam enters the block on the first scan (positions 1, 5, and 9 in

time) and exits the block on the subsequent scan (positions 6, 10, and 14 in time).
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this period range from 0.70 to 0.79, with the strongest

correlation corresponding to the anemometer at 23 m

AGL.

b. Strong wind example

Figure 6 shows the velocity components derived from

the lidar data using 1000 m 3 1000 m blocks (black

dots) and the averaged sonic anemometer data from five

heights on the VT (colored lines) during a 4-h period

with strong north-northwest winds (2000–2400 UTC

21 March 2007). Lidar velocity estimates for blocks that

were 500 m 3 500 m and smaller produced substan-

tially noisier results with little to no skill in matching

the anemometer data. According to the tower ane-

mometer data, the mean wind speed above the tree

tops ranged from 8 m s21 at 12.5 m AGL to 12.2 m s21

at 29 mAGL for the 4-h period. Themean TKE ranged

from 4.93 m2 s22 at 12.5 mAGL to 1.58 m2 s22 at 29 m

FIG. 5. Time series of lidar-derived (black points) and averaged sonic anemometer (color traces) velocity components for a 4-h period

during light wind conditions. A 250 m 3 250 m block size was used for the lidar-derived velocity estimates.

FIG. 6. As in Fig. 5, but during strong wind conditions. A 1-km2 block size was used for the

lidar-derived velocity estimates.
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AGL. The mean gradient Richardson number was

20.005, indicating slightly unstable to nearly neutral

conditions.

The lidar collected wide PPI scans every 17 s during

this period. The mean SNR over the 1-km2 block ranged

from 50 to 75 with only a few very brief excursions ex-

ceeding 100. The mean CCF maximum ranged from

0.1 to 0.45 and averaged 0.29. The fluctuations in the

time series of lidar u components show slightly in-

creasing correlation with the averaged anemometer u

components as a function of height on the tower. At

12.5 m, the linear correlation coefficientR is 0.31 and at

29 m AGL, R is 0.39. The correlation coefficients for

the y components are essentially constant, ranging from

0.19 at 12.5 m to 0.22 at 29 m. Overall, the time series

(Fig. 6) suggest the algorithm has captured the strong

mean flow for this period and the larger time-scale u-

component fluctuations on the order of 15 min ormore.

However, that is not to say that the technique is not

capable of resolving sudden changes of the mean flow

FIG. 7. As in Fig. 5, but during moderate wind conditions with a frontal passage. A 1-km2 block size was used for the lidar-derived velocity

estimates.

FIG. 8. As in Fig. 7, but for wind speed and direction for the same 4-h period.

1592 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 29



during turbulent conditions. An abrupt change in the y

component of the flow can be seen at 1330 UTC in Fig.

5. In the next section we show an example of a near

reversal in wind direction that occurred over a 10-min

period with the passage of a density current front.

c. Changing wind during the passage of a
density current front

Figure 7 shows the velocity component time series

comparisons from the afternoon of 26 April 2007 be-

tween 2130 UTC 26 April and 0130 UTC 27 April 2007.

The lidar was programmed to collect alternating RHI

and PPI scans, resulting in one PPI scan (or one RHI

scan) every 30 s. The PPI scans were directed between

1518 and 2118 azimuth at a scan rate of 48 s21. During this

period, a density current front passed over the experi-

mental site at 2325 UTC 26April (Mayor 2011). The z/L

stability parameter at 12.5-m height ranged from22.0 to

20.6 (strongly to moderately unstable) before the ar-

rival of the front from 20.5 to 20.2 (moderately to

weakly unstable) after the passage of the front. Wind

speeds at the beginning of the period ranged from 3 to

6 m s21 and decreased until the front passed. The wind

direction veered dramatically from 3508 (north) before
the front to 2218 (south-southwest) after the front. The

scatter in both forms of wind measurement decreases

FIG. 9. Distributions of velocity component differences as a function of average SNR in the blocks used to derive

the lidar vectors. Contour interval labels are in percent. The bar chart to the right of each contour plot shows the

number of data points in each SNRbin interval. Thewidth of the distribution of velocity component differences tends

to decrease as the SNR increase.

FIG. 10. Distributions of velocity component differences as a function of the maximum of CCF corresponding to

each lidar-derived vector. The bar chart to the right of each contour plot shows the number of comparison points in

eachCCFmaximumbin interval. Thewidth of the distribution of velocity component differences tends to decrease as

the CCF maxima increase.
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with time, because the atmosphere becomes more stable

and the turbulence intensity decreases. Figure 8 presents

the same data shown in Fig. 7 except as speed (top panel)

and direction (bottom panel).

d. Velocity component difference distributions

Figures 9–12 show the distributions of velocity dif-

ferences as functions of the corresponding mean block

SNRs, CCF maxima, observed horizontal wind

speeds, and TKEs. The left panels in Figs. 9–12 cor-

respond to the east–west velocity component differ-

ences (Ulidar 2Usonic), and the right panels in Figs. 9–12

correspond to the north–south velocity component

differences (Vlidar 2Vsonic). Figures 9 and 10 show that

the velocity component differences tend to decrease as

the mean SNR and CCF maxima increase. This is an

encouraging result because the SNR of data from future

experiments may be improved by increasing laser pulse

energy, using larger collection optics, and lowering the

noise intensity in the detection electronics. CCF maxima

may also be improved by decreasing the time between

scans (i.e., faster scanning). Figures 11 and 12 confirm

that the velocity component differences tend to increase

as the observed wind speed and TKE increase.

FIG. 11. Distributions of velocity component differences as a function of the corresponding observedwind speed as

measured by the sonic anemometer at 12.5 m on the ISFF VT. The bar chart to the right of each contour plot shows

the number of comparison points in each wind speed interval. The width of the distribution of velocity component

differences tends to increase as the wind speed increases.

FIG. 12. Distributions of velocity component differences as a function of TKE calculated from sonic anemometer

data at 12.5 m on the ISFFVT. The bar chart to the right of each contour plot shows the number of comparison points

in each TKE interval. The width of the distribution of velocity component differences tends to increase as the TKE

increases.
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e. Lidar velocity components versus sonic
anemometer velocity components

Figure 13 shows the distributions of 180 245 pairs of

velocity components. The lidar-derived components

resulted from 1-km2 blocks and 17- and 30-s scan update

rates. The data points were accumulated into bins of

0.2 m s21 3 0.2 m s21 resolution. The numbers above

the grayscale on the top edge are the accumulation limits

for the shades below. The total number of comparisons

for a given shade is printed in that block of the grayscale.

We chose to shade bins containing as few as one pair to

reveal the behavior of the algorithm over all conditions,

including infrequent high wind speed events. Doing so

reveals a broad distribution of lidar-derived u components

when the sonic anemometer measurements are between

21 and 3 m s21. Similarly, a broad distribution of lidar-

derived y components exists when the sonic anemometer

y components exceed 62 m s21. These distributions are

attributed to the prevailing north–south flow at the site

during the field experiment. Figure 14 shows the distribu-

tion of observed wind speeds and directions that occurred

while PPI scans were being collected during CHATS. The

most frequently occurring airflow was from 1808 to 2008 at
less than 4 m s21. The second most frequently occurring

flow regime was from 3308 to 3608 between 2 and 6 m s21.

Weak westerly flow was less common and easterly flow

was rare.As a result of this nonuniformdistribution ofwind

velocities, we randomly sampled the population of velocity

differences to achieve a uniform distribution in wind di-

rection. Figure 15 shows this distribution. The linear

correlation coefficients are 0.74 and 0.89 for the u (left

panel) and y (right panel) components, respectively.

5. Quality control

As shown in previous sections, the correlation be-

tween the lidar-derived motion components and sonic

anemometer wind components varies according to

a number of factors, including some that can be derived

solely from the blocks of lidar data. In this section, we

describe a quality control (QC) model that enables the

exclusion of vectors that are likely to be in poor

agreement with the anemometer data. This function-

ality is desired when applying the cross-correlation

method to blocks of image data in the scan area that do

FIG. 13. Distributions of 18 m AGL sonic anemometer wind components vs aerosol motion components derived

from the lidar data for 180 245 points using 1-km2 blocks and 17- and 30-s scan update rates. The vast majority of

points fall in the darker bins close to the dashed identity line. This distribution is the result of the nonuniform

distribution of wind speeds and directions during the experiment shown in Fig. 14.

FIG. 14. Distribution of 18 m AGL sonic anemometer wind

measurements for the set of PPI scans collected during CHATS.

The ideal environment for testing would provide a uniform fre-

quency distribution of wind speeds and directions.
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not have anemometer data for validation. This allows

us to create two-dimensional flow fields with the low-

quality vectors removed.

a. Creating the quality control model

The data used to create the QC model were sampled

from the lidar-derived velocity components using 1-km2

blocks from scans with 17- and 30-s update rates. To

eliminate the biasing effects of the uneven distribution

of wind directions at the CHATS site (as shown in

Fig. 14), a random sample of 300 points per 108 interval
was taken to form a training set. Therefore, a training set

for the predictive model contains 10 800 points out of

a total population of 180 245 data points. The dependent,

or response, variable for the multiple linear regression is

the magnitude of the difference between the lidar-de-

rived velocity component and the sonic anemometer

velocity component,bjUl 2Us jandbjVl 2Vs j, respectively.
Predictor variables are the corresponding wind speed

(W), SNR (S), and the maximum of the CCF (C).

Multiple linear regression was applied on 1) first-

degree predictor variables, W, S, and C; 2) first-degree

and interaction predictor variables (e.g.,WS,WSC); and 3)

first-degree, interaction, and second-degree predictor

variables (e.g.,W2,S2).Random subsamplingwas repeated

20 times for cross-validation of the models. Table 2 shows

themean adjustedR2 (coefficient of determination) values

of the regressionmodels for u and y components in each of

these cases. Including interaction and second-degree terms

increases the ability of the model to account for variation

in the data, so these terms were included in all subsequent

regressions. Termswith significance less than 0.05were not

included in the model. The adjusted R2 results for the u

component ranged from 0.39 to 0.47, with a mean R2 of

0.43, and adjusted R2 results for the y component ranged

from 0.24 to 0.33, with a mean adjusted R2 of 0.30. Thus,

themodel for theu component capturesmore variability in

the data than does the y component model. Predictive

models for u and y differences created from one stratified

random sample are shown in Eqs. (2) and (3):

bjUl 2Usj 5 1:0662 0:5026C1 0:050 59W21 0:000 033 82S21 3:649C22 0:002 577WS

2 0:097 43WC2 0:024 63SC1 0:008 761WSC; (2)
bjVl 2Vsj 5 1:1561 0:003 156S2 2:875C1 0:025 72W21 0:000 028 85S21 5:576C22 0:001 39WS

2 0:4965WC2 0:0249SC1 0:004 234WSC: (3)

b. Testing the quality control model

The testing set for each of the 20 random samples

was the complete dataset with the training set removed.

Model testing was performed by removing model-

predicted differences greater than 2 m s21 from the test-

ing set. The mean results show that the u model removes

9.6% of the data, of which 42.1% is correctly identified for

FIG. 15. Distribution of 18 m AGL sonic anemometer wind components vs motion components derived from the

lidar data after random sampling to account for the wind distribution shown in Fig. 14.
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removal. The umodel fails to identify 49.8%of differences

greater than 2 m s21. The y model removes 5.4% of the

data, of which 58.2% is correctly identified for removal.

The y model fails to identify 75.5% of differences greater

than 2 m s21. Figure 16 shows the distributions of lidar-

derived velocity components as a function of correspond-

ing sonic anemometer velocity components after removal

of model-predicted differences greater than 2 m s21.

Correlation between the sonic and lidar u measurements

for the complete dataset is 0.52; correlation between the

u measurements after applying the QC model is 0.75.

Correlation between the sonic and lidar y measurements

for the complete dataset is 0.84; correlation between the y

measurements after applying the QC model is 0.90.

6. Flow fields

In addition to computing vectors for blocks centered

on the tower location for time series comparisons as

described in section 4, we systematically applied the

block and cross-correlation algorithm to all possible

locations in the scan area to compute two-dimensional

flow fields. Although the block size is large compared to

the grid spacing, it can be moved laterally (in x and y) in

increments as small as the grid spacing. The resulting

vector flow fields are spatially dense, with vectors at the

grid spacing. Neighboring vectors in such cases have

a large degree of common heritage. For example, ap-

plying a 1 km3 1 km block on data with grid spacing of

10 m 3 10 m, a shift in one direction by one row or

column results in 100 different points out of a total of

10 000 points in the block area, a 1% change in input

data. Therefore, neighboring vectors are far from being

independent measurements. However, as can be seen in

the flow fields, modest changes in the box location can

have significant impacts on the resulting vectors and

reveal microscale circulations. We show two cases to dem-

onstrate this. We also apply the QC method described in

section 5 to eliminate vectors that are likely to be in sig-

nificant error.

a. Cellular surface layer convection

Time-lapse animations (see the following: 2000–2359

UTC 25March 2007, http://dx.doi.org/10.1175/JTECHD

1100225.s1 and 0000–0359 UTC 26 March 2007, http://

dx.doi.org/10.1175/JTECHD1100225.s1) of high-pass

median-filtered aerosol backscatter data on the af-

ternoon of 25 March 2007 reveal a roiling surface layer

with broad regions of divergence, narrow bands of con-

vergence, and numerous vortices. We note the remark-

able resemblance of this flow with large-eddy simulation

results in Fig. 14 of Sullivan and Patton (2011). The flow

field shown in Fig. 17, our estimate of the two-component

horizontal wind field at 0019:47 UTC, was calculated

using 1 km3 1 kmblocks and one pair of scans separated

by 17 s. Vectors were calculated every 10 m in the hori-

zontal Cartesian dimensions and streamlines were drawn

FIG. 16. Distribution of 18 m AGL sonic anemometer wind components vs motion components derived from

the lidar data after application of the quality control algorithm. (left) The linear correlation coefficient for the

u-component comparisons is 0.75. (right) The linear correlation coefficient for the y-component comparisons is 0.90.

TABLE 2. Mean adjusted R2 values for regression models.

First degree

First degree

with interactions

First and second

degrees with interactions

u 0.22 0.36 0.43

y 0.18 0.26 0.30
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by a particle trace procedure in Interactive Data Lan-

guage (IDL) with second-order Runge–Kutta integra-

tion. At the time, a vortex is located 2.7 km south and

0.2 km west of the lidar. The flow field also reveals

a saddle point 3.5 km south of the lidar and 0.3 km east of

the lidar. In situ data show light (,3 m s21) and variable

winds until approximately 0130 UTC, when a uniform

west-southwest flow swept across the region.

b. Density current front

Mayor (2011) describes seven density current fronts

that passed over the experimental area during CHATS.

Here we apply the cross-correlation method to a pair of

scans from one of those cases, ending at 2308:58 UTC

26 April 2007 (a time-lapse animation of this event cov-

ering the 3-h period between 2200UTC26April 2007 and

0100 UTC 27 April 2007 is available online at http://dx.

doi.org/10.1175/JTECHD1100225.s1). A block size of

1 km 3 1 km was used and the scans were separated by

30 s. Figure 18 reveals the flow field when the front ap-

proximately bisected the scan area. Flow north of the

front was northerly (indicated by blue streamlines) and

flow south of the front was southerly (indicated by red

streamlines). However, in addition to the narrow band

of convergence at the front, the lidar-derived flow fields

reveal eastward transport of air that flows into a vortex

centered 3.7 km south of the lidar and 1.5 km east of the

lidar. These observations show that flow may not rise

over the front uniformly and rather may be transported

significant horizontal distances before being swept up

into narrow and rapidly rising currents.

7. Discussion

a. Hypothesis

A hypothesis prior to beginning this research project

was that the velocity component agreement would be

best during periods of sufficient turbulence intensity and

poorest during periods of stability. The justification of

the hypothesis was that turbulence mixes particulate

matter and would result in aerosol features that were

good tracers of the mean air motion in the block area.

Conversely, stability at night was expected to result in

worse agreement because of stratification and gravity

FIG. 17. Streamlined flowfield resulting from the application of the cross-correlation algorithm to a pair

of PPI scans through a convective afternoon atmospheric surface layer when winds were light and var-

iable. Scanswere separated in time by 17 s. A block size of 1 km3 1 kmwas applied at the grid interval of

10 m. Streamlines were launched every 100 m.
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waves with propagation vectors that may be significantly

different from the local wind vector. The results from

CHATS indicate that the aerosol motion vectors are

most correlated with sonic anemometer wind measure-

ments during periods of stability and light winds. In

general, as long as aerosol features are present, better

results will be found at night with light winds than during

more turbulent daytime conditions.

b. Resolution

The two-component vectors derived from the cross-

correlation technique are not representative of the av-

erage motion over the block area. They are representa-

tive of the motion of the predominant coherent features.

For example, a block covering an area that is composed of

equally significant features moving in opposite directions

will result in a CCF with two peaks. The algorithm we

applied uses the strongest CCF peak (the largest maxi-

mum) to determine a single velocity vector to represent

the block. It is for this reason that the algorithm does not

smooth the actual velocity field (within the area of

a block) and that the derived velocity fields may reveal

variations at scales smaller than the block size. The re-

sponse of the algorithm is not without comparison:

a similar distribution of velocities may occur within the

pulse volume of a Doppler lidar and signal processing

algorithms are programmed to provide a single repre-

sentative velocity (Rye and Hardesty 1993a,b).

c. Unique environment

The unique environment, including the altitude of the

measurements, spatially varying land uses below the

blocks, and seasonally dependent agricultural activities,

are likely to have influenced the dataset and statistics of

velocity differences. For example, as shown in Fig. 1, the

four blocks were over different amounts of two dra-

matically different vegetation types: 1) a walnut orchard

and 2) either bare field or short crops, such as tomato

plants (depending on the season). The 250 m 3 250 m

block was entirely over a walnut orchard. However, for

all of the larger blocks, only the southern portions were

over the orchard while northern portions were over

FIG. 18. Streamlined flow field resulting from the application of the cross-correlation algorithm to a pair of

PPI scans when a density current front was advancing from the south. Streamlines are colored according to the

sign of the v component with northerly flow north of the front (blue) and southerly flow south of the front (red)

indicated. The scans were separated by 30 s and a 1 km3 1 km block was applied at the grid spacing of 10 m.

Streamlines were launched every 100 m.
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either bare field or short crops.6 As a result, only por-

tions of the blocks sampled the atmospheric roughness

sublayer where the presence of the canopy strongly in-

fluences the character of the turbulence (Kaimal and

Finnigan 1994; Adrian 2007; Finnigan et al. 2009; Shaw

et al. 1995; Su et al. 2000). (The depth of the roughness

sublayer is about 3 times the height of the canopy.) We

also note that the orchard was bare of leaves at the be-

ginning of the CHATS experiment and was fully leaved

by the end (Patton et al. 2011). In addition to these two

general surface types, an east–west-oriented road passed

beneath the three largest blocks on the northern edge of

the orchard and a north–south-oriented road passed

beneath the largest block on the eastern side. Inspection

of time-lapse animations of backscatter data reveals

moving point sources of particulate matter from this

roadway. Agricultural activities (e.g., plowing, spraying,

and harvesting) also resulted in significant moving point

sources of dust.

8. Summary

The results presented show that the aerosol motion

components derived from pairs of consecutive scans are

in best correlation with the averaged sonic anemometer

data when the mean wind speed and TKE are low,

maximum of the CCFs are large, means of the SNR over

the block areas are large, and the atmosphere tends to-

ward stability. The use of larger blocks also improved

the agreement. Conversely, the correlation tends to

become worse when the wind speed is strong and TKE is

high, the maximum of the CCFs is small, the SNR is low,

and the atmosphere is unstable. We chose to limit our

study to vectors only resulting from pairs of consecutive

scans and single CCFs. Doing so results in vectors with

the highest possible temporal resolution given the scan

update rates used during CHATS. Had the ground be-

neath the lidar trailer been constantly firm and the tower

been avoided by scanning just above it, cross-correlation

functions could be averaged, as was done in Mayor and

Eloranta (2001) to investigate mean velocities.

In the future, we recommend tests of the technique

with more care taken to maintain constant platform at-

titude, verification of the laser beam location near the

reference wind measurement, and avoidance of hard-

target reflections in the block areas.We also recommend

evaluation of the technique at altitudes above the

surface layer. Testing in a coastal environmentmay have

significant merit given the current importance of de-

veloping improved observational methods for offshore

wind resource assessments.
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APPENDIX

Use of Multicore and Graphical Processing Units

a. Introduction

Without optimization for execution speed, the original

program to compute aerosol feature velocity required

approximately 4 days to calculate all of the velocities

(four blocks centered on the tower) used in our study. In

practice, we often applied the program to different pe-

riods of the dataset concurrently to hasten the process.

Doing so reduced production of the results to 24 h.

However, the approach did not take advantage of the

parallel processing capabilities of CPUs and graphics

processing units (GPUs), respectively. Therefore, we

explored and implemented methods to dramatically

accelerate the execution of the program by using soft-

ware that employs modern processors more efficiently.

Because these efforts were helpful in producing results

more quickly, and will likely be of use in real-time cal-

culation of wind velocity fields in the future, we provide

a brief overview of the steps taken to accelerate the

execution.

The algorithms used to calculate wind velocity from

lidar data were originally implemented in IDL. IDL

provides many array operations that streamline appli-

cation development, and provides an easy means of

processing many data files by running multiple instances

of the application. However, some routines did not fully

utilize multiple CPU cores for maximum performance.

Therefore, we decided to write our own routines that

utilized multiple threads and the CPU cores’ single in-

struction, multiple data (SIMD) operations. However,

running multiple instances of the application to process

multiple files simultaneously requires substantial processor

resources and reduces the efficiency of multithreading on

the CPU. Therefore, we decided to investigate GPU

computing as a viable method of accelerating application

performance by offloading computationally intensive

algorithms to a graphics processor. Our goal was to ac-

celerate the execution speed of a single instance of

6 Of the 500 m 3 500 m block 78% was over orchard while the

remaining northern 22% was over bare fields or relatively short

crops, such as tomato plants. Of the 750 m3 750 m block 68%was

over orchard and 32% was over nonorchard. The 1 km 3 1 km

block was 63% over orchard and 37% over nonorchard.
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processing using oneGPU, and to runmultiple instances

with multiple GPUs.

b. Methodology

We profiled parts of our application to gauge which

routines required the most execution time. Median fil-

tering, polar-to-rectangular projection, and calculation

of the CCF were the most time-consuming parts. For-

tunately, these routines map easily to data parallelism

and thus are ideal for GPU computing. For this appli-

cation we used a library developed by Tech-X Corp

called GPULib. The library provides various array

routines found in IDL that have been programmed to

run on nVidia GPUs using Compute Unified Device

Architecture (CUDA). This made it easy to rewrite

parts of the original application to run on the GPU by

keeping most of the programming in IDL. The version

of the library used in this study, GPULib version 1.4.4,

did not have all of IDL’s routines such as the median

filter, which had to be created through CUDA and ex-

ecuted using IDL’s CALL_EXTERNAL utility. We ran

this application on a workstation with a six-core 3.33-

GHz Intel Xeon 5680 and one nVidia Tesla C2070 card.

1) MEDIAN FILTER

Median filtering is the most time-consuming part of

the algorithm. Each beam of a scan must pass through

a low-pass and a high-pass median filter. The computa-

tionally intensive part of the median filters is the sorting

that must be performed for each new window position.

As the width of the filter window increases, the execution

time of the filter also increases. We initially leveraged the

parallelism of the CPU by implementing the branchless

vectorized median (BVM) algorithm developed by

Kachelriess (2009). The BVM was implemented in an

external program that was coded in C and used Stream-

ing SIMD Extensions (SSE) and Open Multiprocessing

(OpenMP) for vectorization and multithreading, respec-

tively. For theGPUversion of BVM,we implemented the

algorithm described in Chen et al. (2009) using CUDA.

Filtering scans containing 150 radial beams of 7500

backscatter samples each, the CPU version of BVM im-

plemented with OpenMP and SSE required 160–180 ms

to complete. The GPU version of BVM using CUDA C

completed filtering in;90 ms, making it almost twice as

fast as the CPU version.

2) POLAR-TO-RECTANGULAR PROJECTION

The projection of the scan data onto a rectangular grid

begins by converting the grid’s coordinates from a Car-

tesian system to a polar system with its origin at the lo-

cation of the lidar. The polar coordinates are then used

to compute interpolants of the scan data using bilinear

interpolation. The backscatter samples in a scan are

uniformly spaced along the range of a beam, but the

azimuthal angle of each beam is slightly different from

the last. To accurately measure the interpolation values

along the azimuth of the scan, each position of the

rectangular grid must be checked to determine which

pair of beams they lie between and to determine the

distances to the beams. Finding which two beams an

interpolant lies between is the most time-consuming

part of the projection process. Initially, IDL was used

but later we used GPULib to speed the process. The

execution times for grid resolutions of 20, 10, and 8 m

are lower on the CPU than on the GPU. At 6 and 4 m,

however, the GPU becomes much faster than the CPU.

We notice that the execution times for the CPU start

small but increase exponentially as grid spacing de-

creases. The GPU’s execution time is much longer than

that of the CPU at 20 m, but does not increase as sharply

as the CPU as the grid spacing decreases.

3) CROSS CORRELATION

FFTs are the most time-consuming part of the calcu-

lation of the CCF. Two-dimensional (2D) FFTs of n3 n

matrices have a time complexity of O(N2 log2N), which

causes their execution time to increase exponentially as

the matrix size increases. The CCF calculation involves

two forward transforms and one inverse transform. This

runs quickly with 250 m 3 250 m blocks, but becomes

significantly slower using 1 km3 1 km blocks. At a grid

spacing of 4 m 3 4 m the CCF of a pair of 250 m 3
250 m blocks can be computed in less than 4 ms using

one CPU core, whereas the 1 km3 1 km blocks require

more than 250 ms to be computed on one CPU core.

Because of the inherent parallelism of FFT algorithms,

libraries have been made that perform FFTs on GPUs

such as nVidia’s CUDAFFT library (CUFFT). GPULib

provides a GPU-accelerated FFT routine with the same

functionality as the one in IDL, making this the easiest

optimization in our application. At block sizes of 250 m3
250 m and 500 m3 500 m the CPU is slightly faster than

the GPU, especially at low resolutions. However, at

larger blocks sizes and higher resolutions, the GPU

can become several times faster than the CPU.

c. Discussion

By using the optimizations described, we were able to

process the entire CHATS dataset consisting of four

blocks centered over the tower in approximately 12 h.

Holding all else constant, except optimizations, the

process requires almost 24 h. The use of GPU comput-

ing in the processing of lidar data can accelerate exe-

cution speed over CPU-basedmethods but, as described
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above, may result in slower execution for some cases. As

the size and resolution of the blocks increases, process-

ing them on the GPU becomes more efficient than on

the CPU. This is especially beneficial for the calculation

of vector flow fields, such as those shown in Figs. 17 and

18. For a pair of 608-wide PPI scans, we are able to

compute approximately 5000 vectors using a 1 km 3
1 km block every 50 m to a range of 5 km within 10 s.

This amount of time is smaller than the time required to

collect the two scans, thereby demonstrating the feasi-

bility of providing two-dimensional horizontal vector

flow fields in real time.
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