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ABSTRACT

EVALUATIONS OF THE PERFORMANCE OF A CROSS-CORRELATION

ALGORITHM FOR WIND VELOCITY ESTIMATION USING

SYNTHETIC BACKSCATTER LIDAR IMAGES

AND VELOCITY FIELDS

by

c© Masaki Hamada 2014

Master of Science in Environmental Science

California State University, Chico

Summer 2014

The performance of a cross-correlation algorithm for remote wind

velocity estimation by atmospheric lidar is evaluated by using synthetic aerosol

backscatter images and synthetic wind velocity fields. The results of applying the

cross-correlation algorithm to these synthetic images and flow fields were compared

to the mean velocities of the synthetic flow fields. To mimic the atmospheric

backscatter, a gently varying aerosol background was generated from smoothed

random noise and the superposition of Gaussian puffs. Two-component vector flow

fields with spatial variability were generated by analytic formulations for various

flows such as convergence, divergence, rotation, and shear. Small scale turbulent

perturbations were generated by use of a spectral tensor model of atmospheric

surface layer turbulence. The pixels of synthetic backscatter from the first image

were displaced by the corresponding vectors of the synthetic flow fields and a

second image was generated by bicubic interpolation.



The cross-correlation algorithm results in one displacement vector that

maximizes the correlation of two consecutive backscatter images. The results show

that the cross-correlation algorithm produces perfect displacement vectors only

when the velocity field is perfectly uniform and no aerosol features enter or leave

the interrogation window between consecutive frames. Any spatial variation in the

velocity field may result in an error and the magnitude of the error increases as the

non-uniformity of the flow field increases.

The results show that the magnitudes of the resultant displacement

vectors tend to be slightly lower than the actual ones from the given velocity fields.

There are two possible causes of underestimation. The first is likely attributed to

the non-uniformity of the velocity field within the interrogation window. In this

case, aerosol features with lower velocity tend to appear in both frames, while those

with higher velocity tend to move out of the interrogation window. Reducing the

size of the interrogation window may reduce this error. The second is likely

attributed to aerosol features cut by the image edges. In this case, a larger

interrogation window is permissible if the edges of the images are tapered. The

results also show that both the area and the intensity of aerosol features influence

the performance of the cross-correlation algorithm. This observation can be

reduced by applying histogram equalization. However, the hisogram equalization

tends to broaden the cross-correlation function and increases the ambiguity of the

peak location.

According to this study, the performance of the cross-correlation

algorithm is maximized by: (1) using zero-padded images, (2) tapering the image

edges, (3) applying a multi-pass approach, and (4) fitting curves to the

cross-correlation function peak for subpixel resolution of the displacement vector.

For experiments with 100 pairs of synthetic backscatter images applied to synthetic
xiii



velocity fields of relatively low turbulent intensities, the cross-correlation algorithm

results agree with the actual mean velocity within 2% with these options. However,

the underestimation of the displacement vector cannot be completely eliminated.

xiv



CHAPTER I

INTRODUCTION

In this chapter, the importance of wind measurements is briefly discussed

and several techniques to measure the wind velocity are shown. These techniques

are classified into two types, in situ (in position), that is the measurement based on

direct contact, and remote sensing. The cup anemometer and the sonic

anemometer are two examples of instruments for in situ measurement of the wind.

On the other hand, the Doppler lidar and the aerosol lidar are two examples of

instruments for remote sensing of the wind. Both the Doppler lidar and the aerosol

lidar can be used to estimate horizontal wind velocity vectors. From these two

types of lidar, this thesis focuses on the use of the cross-correlation algorithm to

estimate the wind field from aerosol lidars. A review of literature in this chapter

lists examples of the cross-correlation algorithm previously applied to estimate the

wind velocity. Finally, a statement of problems and hypothesis associated with the

cross-correlation algorithm are described at the end of this chapter.

Importance of Wind Measurements

Wind is created by horizontal atmospheric pressure gradients,1 but

landscape, vegetation, and terrestrial features such as houses and buildings strongly

influence the wind velocity near the surface of the Earth. In general, surface

vegetation, features, and terrain reduce the wind velocity at the surface because of

1A physical quantity that describes which direction and at what rate the pressure
changes around a particular location.

1



2

the frictional force they exert on the flow (Stull, 1988). On the other hand, when

the wind is blown over a ridge that lies transverse to the wind flow, the air streams

may be squeezed and accelerated, which results in higher wind velocity on elevated

hilltops. Similarly, convection may influence the mean wind velocity near the

surface.

Wind is a renewable energy resource, and the measurement of the wind

velocity is crucial to assess wind energy potential in a given region. The power

available from the wind is proportional to the density of the air, the area of the

turbine rotor disk, and the cube of the wind speed. The wind power P is expressed

as

P =
1

2
CρAv3, (1)

where C is the power coefficient, ρ the density of the air, A the area of the turbine

rotor disk, and v the wind speed (Burton et al., 2011). These factors encourage

industry to develop larger wind turbines at higher altitudes (where the frictional

effect of the surface is reduced and the average wind speed higher) and with larger

diameter rotors. Modern wind turbines, capable of producing 5 MW of electrical

power, have hubs typically at 100 m above the surface, and with rotor diameters

approaching 100 m.

The ocean is relatively flat compared to land, so the frictional effects of

the ocean surface on the wind are relatively small and the wind speeds are

generally larger over the ocean than over the land. Significant interest exists in

installing wind farms (arrays of wind turbines) offshore. However, offshore wind

farm developers must demonstrate that adequate wind resources exist in order to

acquire the financing needed. Observations of the wind over long periods are a

component of wind resource assessment (Bailey et al., 2012).
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In addition to holding value for use in wind resource assessment, lidar

observation of the wind field is likely to have value in very short-term prediction of

the wind. Forecasts of the wind, up to a few minutes in advance, could be used to

optimize the production of wind energy and protect turbines from damage. Finally,

in addition to the above applications in wind energy, remote wind measurements

may be of value in a variety of other fields. Those include transportation

(especially aviation safety near airports); wildfire suppression; prediction of

atmospheric pollution dispersion; and meteorological research.

Methods to Measure the Wind

Anemometer

An anemometer is a device used to measure the wind speed. The first

anemometer was a swinging-plate instrument described and illustrated by Leon

Battista Alberti in 1450 and the shape and structure of the anemometer has

evolved to measure the wind speed accurately (Middleton, 1969). Among several

types of anemometers, two types, a cup anemometer and a sonic anemometer, are

often used to measure the wind speed today. A cup anemometer consists of

hemispherical cups mounted on the ends of horizontal arms mounted at equal

angles to each other on a vertical shaft, as shown in Figure 1a. When the wind

blows from any horizontal direction, torque is produced, and the vertical shaft

turns. For this device, the wind velocity is proportional to the angular speed of the

shaft. Thus, one can measure the average wind speed by counting the number of

turns of the shaft over a given time period. Some advantages of this measurement

are low cost and generally good accuracy (Bailey et al., 2012).

Sonic anemometers use ultrasonic pulses to measure the wind velocity.

Figure 1b represents the sonic anemometer. When an ultrasonic pulse is emitted
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from a transducer, it travels to another transducer. The time required for a given

pulse to travel across a pair of transducers depends on the wind velocity. For

example, if the wind blows in the opposite direction of the pulse’s velocity, it takes

longer time than in the absence of wind. The wind velocity can be measured by the

combination of measurements of the time to travel between pairs of transducers.

The advantage of this measurement is that sonic anemometers are “fast response”

and therefore can measure turbulent fluctuations of the wind velocity which is

common in the planetary boundary layer.2

The wind measurement using three cup anemometers, as shown in

Figure 1a, is the most popular method, and is currently used as the industry

standard for wind resource assessment studies (Bailey et al., 1997). However, cup

or sonic anemometers give only the wind speed at a specific point in space.

Moreover, this measurement requires a stationary platform such as a tower. It is

very difficult to erect towers over the ocean, so in situ measurement is challenging

to deploy for offshore winds.

2The bottom layer of the troposphere that is in contact with the surface, and responds
rapidly to the surface.
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(a) Cup anemometer.

(b) Sonic anemometer (CSAT3).

Figure 1. (a) An image of a cup anemometer (Met-One speed sen-
sor). The wind speed is measured by the rate of rotation of cups. (b)
An image of a sonic anemometer (CSAT3: three-dimensional sonic
anemometer). The wind velocity can be measured by the combi-
nation of measurements of time of travel of ultra sonic pulses from
pairs of transducers. Source: Images from Campbell Scientific, Inc.:
http://www.campbellsci.com/.
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Lidar

Lidar is an acronym for LIght Detection And Ranging. Lidar is an active

remote sensing technology that illuminates distant targets with radiation, and is

similar in principle to radar (RAdio Detection And Ranging). The main difference

is that lidar uses electromagnetic radiation of wavelength (200 nm - 10 µm) and is

much shorter than that of radar (1 mm - 10 cm). Since shorter wavelengths of

radiation allow the detection of smaller scatterers in the atmosphere, lidar systems

are more suitable for observing the clear atmosphere than radar systems.

Therefore, lidars can be used to measure the wind velocity via the scattering of

aerosol particles.3 This measurement is attractive for offshore winds since it may be

possible to measure the offshore wind velocity remotely from the coast. Figure 2 is

an artist’s rendition of a lidar system scanning from the coast.

Atmospheric lidars that are capable of observing the wind can be divided

into three broad classes (Baker and Coauthors, 2013). First, coherent Doppler

lidars employ heterodyne detection to measure the frequency shift of the

backscattered radiation (Grund et al., 2001, Henderson et al., 1991, Pearson et al.,

2009, Post and Cupp, 1990). Second, direct detection Doppler lidars employ various

types of interferometers to measure the frequency shift of the backscattered

radiation (Gentry et al., 2000, Gentry and Korb, 1994, Grund and Tucker, 2011,

McGill et al., 1997). The third method to measure the wind is by the use of motion

estimation algorithms applied to the images produced by direct detection

non-Doppler lidars (Eloranta et al., 1975, Kolev et al., 1988, Shimizu et al., 1981).

Because coherent detection Doppler lidars are commercially available and most

commonly used in lower atmospheric wind sensing, the next section describes how

3Colloid of fine solid particles or liquid droplets suspended in a fluid.
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coherent Doppler lidars are used to observe vertical profiles of two-component

horizontal wind vectors.

LIDAR System

Wind

Figure 2. An artist’s rendition of a lidar system scanning from the
coast. Note the square block on the scan sector. This square block
represents an example of an “interrogation window” used by the
cross-correlation algorithm.

Doppler Lidar versus Motion Estimation
by Aerosol Lidar

Doppler Lidar

Doppler lidar is a remote sensing technology used to measure the wind

velocity. Figure 3 shows an artist’s rendition of a commercially available compact

Doppler lidar. A Doppler lidar emits pulses of electromagnetic radiation into the

atmosphere and measures the radial (or line-of-sight) component of the wind

velocity via the Doppler shift of frequency of backscattered radiation by the motion

of aerosol particles. When the frequency of the backscattered radiation is higher

than that of the transmitted radiation, the aerosol particles are approaching the
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Doppler lidar. On the other hand, when the frequency of the backscattered

radiation is lower than that of the transmitted radiation, the aerosol particles are

moving away from the Doppler lidar. To obtain the distance between the Doppler

lidar and the pulse volume as it travels, the time between emitting and receiving

radiation is measured. From the Doppler shift of the backscattered radiation, the

distance between the Doppler lidar and aerosol particles, and the fact that aerosol

particles move with the wind, the radial component of the wind velocity (either

approaching or receding), at remote locations, can be estimated.

Aerosols

 

Wind 

Pulse of Radia!on 

 

Backsca"ered radia!on 

Figure 3. An artist’s rendition of a commercially available, com-
pact, heterodyne Doppler lidar, and a single pulse at an instant in
time. The pulse propagates through the atmosphere at the speed of
light.

To estimate the horizontal wind velocity vector using a Doppler lidar, a

conic scan and curve fitting must be used. The velocity azimuth display (VAD)
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method results in a vertical profile of horizontal wind vectors above the Doppler

lidar (Köpp et al., 1984). It is a “profiling” method. Figure 4 shows a special case

of VAD scans. The x-, y-, and z-directions are defined as eastward, northward, and

upward, respectively. Here, the wind velocity is in the positive x-direction

(eastward), and a Doppler lidar scans from the azimuthal angle φ = 0 to φ = 2π

while the the polar angle θ is held constant. In this case, the Doppler lidar scans

the atmosphere in the shape of a cone. At point A, the radial component of the

wind velocity is positive and maximum, then it decreases to zero (at point B),

minimum (at point C), and increases to zero (at point D), and returns to the

maximum value (at point A). Figure 5 shows the radial component of the wind

velocity vr versus the azimuthal angle φ for this special case of VAD scans which

demonstrates that vr changes sinusoidally as φ increases. In this special case, the

plot is the cosine function when the phase angle equals zero. If the wind has both

the north and east components, the phase angle becomes a non-zero value. Doppler

lidar has been used to measure wind profiles, and experimentally validated (Mann

et al., 2010, Sathe and Mann, 2012, Sathe et al., 2011). The advantages of this

measurement are the ability to measure the wind velocity remotely, and the high

reliability of the technique (Reitebuch et al., 2001). The disadvantages of this

measurement are that the method assumes that the wind velocity is uniform

throughout the region swept by the Doppler lidar, and that it takes time to sweep

out the cone. Also, the method is not always accurate when the wind velocity is

not uniform in the region inside of the cone or changes in the time interval for one

complete cycle of the VAD scan. It is possible to scan a Doppler lidar horizontally

as in Figure 2, and obtain radial velocity fields, but the full description of the wind

velocity field is not possible from a single Doppler lidar. According to Newsom
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et al. (2005), dual-Doppler is possible, but using two Doppler lidars increases the

cost and complexity.

 

vr 

vr 

vr = 0 

vr = 0 

Doppler Lidar 

φ 

z 

x 
y 

North 

South 

East West 

A 
D 

C 

B 

Wind 

θ 

Figure 4. The Doppler lidar system used to measure 2-components
of wind velocity (VAD scans).
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Azimuthal Angle 

φ (rad) 

Radial Component of 

the Wind Velocity vr   

(vr  / vr max) 

A 

B 

C 

D 

Figure 5. The radial component of the wind velocity vr versus the
azimuthal angle φ for VAD scan of Doppler lidar.

Motion Estimation by Aerosol Lidar

Aerosol lidar is another remote sensing technology that may be used to

measure the wind velocity. Figure 6 represents the aerosol lidar, the REAL, which

stands for Raman-shifted Eye-safe Aerosol Lidar. REAL is an elastic backscatter

lidar operating at 1.54-µm wavelength of radiation (Mayor and Spuler, 2004, Mayor

et al., 2007, Spuler and Mayor, 2005, 2007). Similar to the Doppler lidar, this lidar

system emits pulses of electromagnetic radiation into the atmosphere, and collects

the backscattered radiation by aerosols. However, this lidar system measures the

wind velocity by applying motion estimation algorithms to consecutive pairs of

backscatter images (Mayor et al., 2012). The advantage of this approach is the

ability to obtain two components of the wind velocity over an area from a single
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lidar system. The following sections describe how to measure the wind using this

lidar system.

 

 

 

Lidar System 

 

Aerosols 

Figure 6. An artist’s rendition of the Raman-Shifted Eye-Safe
Aerosol Lidar (REAL) at an instant in time after a laser pulse is
transmitted into the atmosphere.

Backscatter Lidar Images

The lidar system observes the atmosphere as follows. First, the lidar

system emits short pulses of radiation into the atmosphere. For example, the lidar

system described by Mayor et al. (2007) emits a 170-mJ pulse of 6-ns pulse

duration every 0.1 s. Next, the pulse of radiation is scattered in all directions by

aerosol particles, a colloidal systems of solid or liquid particles suspended in the

atmosphere, as the pulse traverses the atmosphere. (The size of an aerosol particle

ranges approximately from 0.1 µm to 100 µm.) As the pulse propagates through

the atmosphere, a small portion of the radiation is scattered back to the lidar

system and focused on to a photodetector. Backscattered radiation focused on the

photodetector is converted to an electrical current by the photodetector and

amplified by a transimpedance amplifier. The resulting analog signal is converted

to a digital signal by a high-speed digitizer.
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The scanner (or beam steering unit) directs subsequent pulses in other

azimuth or elevation angles. Finally, from the collection of returns at different look

angles, an image of backscatter intensities due to aerosols may be created. Since

each aerosol particle is small compared to the pulse volume, the lidar cannot

distinguish individual aerosol particles. However, it can measure what is a proxy to

relative aerosol concentration via backscatter intensities and detect significant

macroscopic aerosol features in the images.

In practice the REAL lidar backscatter signal intensity data is converted

to relative aerosol backscatter intensity by multiplying each element of returned

waveform by the range squared. In addition, the range-corrected relative

backscatter intensity is expressed in decibels (dB). Finally, high-pass median

filtering is applied to remove large-scale features that are not likely to be advected

by the local wind. These features, for example, include attenuation, instrumental

artifacts, and large meteorological features such as mesoscale fronts.

There are two types of lidar scans, plan position indicator (PPI) and

range height indicator (RHI). Let θ stand for the polar angle (angle from the

vertical z-axis) and φ for the azimuthal angle. Then, the PPI scan sweeps in the

direction of increasing φ while θ is held constant, as shown in Figure 7a. Then one

interpolates the polar data to a Cartesian grid to simplify image processing and

motion estimation. The result is that one obtains the horizontal cross-section of the

atmosphere, as shown in Figure 7b. When the RHI scan sweeps in the direction of

increasing θ while φ is held constant, a vertical cross-section of the atmosphere is

obtained, as shown in Figure 8b. This image shows the planetary boundary layer is

about 800 m deep. Thus, the lidar system can be used to observe the atmosphere

in two dimensions via backscattered radiation by aerosols.
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Z

φ

y

x

 

θ = constant 

(a) The Plan Position Indicator (PPI) scan by the REAL.

(b) An example of PPI scan lidar image.

Figure 7. Plan Position Indicator (PPI) scan.
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φ =

Z

 constant

Z

x

y

 

θ 

(a) The Range Height Indicator (RHI) scan by the REAL.

(b) An example of RHI scan lidar image.

Figure 8. Range Height Indicator (RHI) scan.
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Wind Velocity Estimation

The wind velocity is estimated by using two consecutive backscatter

lidar images. The primary assumption is that aerosol features are advected by the

wind. In this case, the wind velocity in a particular square region, called a block,

should be approximately equal to the velocity of the aerosol features in the region.

To find the velocity of aerosol features from lidar backscatter images, two

consecutive images are taken to find the displacement of the aerosol features ∆~r.

Then, the velocity ~v of the aerosol features can be calculated by

~v =
∆~r

∆t
, (2)

where ∆t is the time between two consecutive lidar scans. ∆t depends on how fast

the lidar system scans the atmosphere, but for the REAL it is about 15 s for a 60 ◦

sector scan. The lidar system’s scan speed ∆t is constant. However, it is

challenging to get displacement ∆~r between the two consecutive images since

aerosol features tend to diffuse and change shape and brightness as they move.

Figure 9 shows two real lidar backscatter images separated by ∆t = 51 s.

One can see that aerosol features have moved to the south and it is the job of the

motion estimation algorithm to estimate the displacement of these features in the

time interval ∆t between the scans. In this case, motion estimation methods may

be applied to derive the displacement ∆~r and one motion estimation algorithm is

the cross-correlation algorithm (Eloranta et al., 1975, Mayor et al., 2012).
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(a) Lidar backscatter image at t1.

.

(b) Lidar backscatter image at t2.

.

Figure 9. Two lidar backscatter images separated
by the time interval ∆t = t2 − t1 = 51 s. They
were collected at the California State University,
Chico, University Farm.
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Cross-Correlation

The cross-correlation function provides a measure of the similarity of two

waveforms as a function of lag4 applied to one of the waveforms. The normalized

cross-correlation function, rx, for two waveforms f1 and f2 is defined as

rx =
COV1,2
S1S2

, (3)

where COV1,2 is the covariance of the overlapped portions of f1 and f2, S1 is the

standard deviation of f1, and S2 is the standard deviation of f2 (Davis and

Sampson, 2002). Figures 10a and 10b show an example of 1-dimensional (1-D)

waveforms f1 and f2 respectively, and Figure 11 shows the resulting

cross-correlation function, rxlag , applied to these waveforms, and plotted as a

function of xlag = −x. From Figure 11, the cross-correlation rxlag is maximum when

the lag, xlag = 8. In this case, the overlapping portions of two waveforms are most

similar when the second waveform is shifted 8 units with respect to the first. If the

second waveform were moved with respect to the first, the lag, xlag = 8, represents

the displacement of the second waveform that maximizes the correlation of the two

waveforms. Thus, cross-correlation can be used to estimate the displacement of the

second waveform, and this principle can be applied to estimate the displacement of

aerosol features in the time interval ∆t between the two consecutive backscatter

images.

4The negative of a given coordinate. For example, xlag = −x.
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x 

f1 (x) 

(a) Arbitrary 1-D waveform at time t1.

 

 

x 

f2 (x) 

(b) Arbitrary 1-D waveform at time t2.

Figure 10. An example of 1-D waveforms. At time t1, the waveform
is expressed as f1(x). The waveform changes in the time interval
∆t = t2 − t1. At time t2, the waveform is expressed as f2(x).
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xlag 

rx lag 

Figure 11. The cross-correlation function for the 1-D waveforms
shown in Figure 10. The peak location of the cross-correlation func-
tion rxlag represents the displacement of the waveform f1(x) that
maximizes the correlation of the two waveforms f1(x) and f2(x).

Cross-Correlation Algorithm

The cross-correlation algorithm is a numerical procedure to determine

the displacement of features between two consecutive frames. The displacement is

determined by finding the location of the peak of the cross-correlation function

(Eloranta et al., 1975). For continuous functions f1(x) and f2(x), the

cross-correlation function, rx, is defined as

rx =

∞∫
−∞

f∗1(x)f2(x− xlag) dx, (4)

where f ∗1 (x) is the complex conjugate of f1(x). According to Telford et al. (1990),

the cross-correlation function of f1(x) and f2(x) is equivalent to the convolution of

f1(x) with f2(−x).



21

The cross-correlation function rx can also be expressed as

rx = F−1
[
F1(k)F ∗2 (k)

S1S2

]
(5)

or

rx =

∞∫
−∞

F1(k)F∗2(k)ei2πkx

S1S2

dk, (6)

where k is the wave number corresponding to the x-coordinate, F1 is the Fourier

transform of f1(x), F ∗2 is the complex conjugate of the Fourier transform of f2(x),

S1 is the standard deviation of f1, S2 is the standard deviation of f2, and F−1

represents the inverse Fourier transform. The displacement ∆~x of the second

waveform can be estimated by the location of the peak of the cross-correlation

function plotted as a function of xlag = −x. For computing efficiency, the fast

Fourier transform (FFT) can be used instead of the Fourier transform to estimate

the displacement ∆~x. Let f1(x) and f2(x) be discrete functions, and N the number

of data points in the x-direction. Then FFT of f1(x), FFT1 can be expressed as

FFT1 =

∑N
i=1 f1e

−i2πkx
N

N
. (7)

Similarly, FFT of f2(x), FFT2 can be expressed as

FFT2 =

∑N
i=1 f2e

−i2πkx
N

N
. (8)

Using FFT1 and complex conjugate of FFT2, the cross-correlation function rx,can

be expressed as

rx =
FFT−1(FFT1FFT

∗
2 )

S1S2

, (9)
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where S1 is the standard deviation of f1, S2 is the standard deviation of f2, and

FFT−1 represents the inverse fast Fourier transform. Since lidar backscatter

images are 2-dimensional (2-D), the functions f1(x, y) and f2(x, y) are used to

express backscatter intensities. In this case, the 2-D cross-correlation function, rx,y

is defined. Let Nx be the number of points in the x-direction, Ny be the number of

points in the y-direction, kx be the wavenumber corresponding to the x-coordinate,

and ky be the wavenumber corresponding to the y-coordinate. Then rx,y can be

expressed as

rx,y =
FFT−1(FFT1FFT

∗
2 )

S1S2

, (10)

where

FFT1 =

∑Nx
i=1

∑Ny
i=1 f1(x, y)e

−i2π( kxx
Nx

+
kyy

Ny
)

NxNy

(11)

and

FFT2 =

∑Nx
i=1

∑Ny
i=1 f2(x, y)e

−i2π( kxx
Nx

+
kyy

Ny
)

NxNy

. (12)

The displacement ∆~r between the two frames is estimated by identifying the

location of the maximum of the cross-correlation function (the “peak”) plotted as a

function of xlag = −x and ylag = −y.

Wind Velocity Fields

Figure 12 shows a possible arrangement of streamlines5 of the wind

velocity field in the lower atmosphere. Spatial variability of the wind velocity field

is common (Venditti et al., 2013) and in this thesis a small selection of idealized,

simple kinematic flows were selected: uniform flow, converging flow, diverging flow,

rotational flow (vortex), and shear flow. The simplest way to represent these flow

fields is to use analytical functions to create these fields. For example, if the flow is

5A line that is parallel to the direction of the flow of a fluid.
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Figure 12. An example of a possible arrangement of streamlines of
the wind velocity field.

perfectly uniform, the flow field can be expressed by a constant (v = 10 m s−1)

everywhere. In the case of convergent flow, the field can be expressed by an

analytical function of negative divergence. However, the real atmosphere is also

turbulent, so the effects of turbulence must be taken into account (Pope, 2000). To

make more realistic estimations of the wind velocity fields, one can add synthetic

turbulent perturbations produced by a model described by Mann (1994) and Mann

(1998) to the fields produced by the analytic functions. The resulting flow fields

can be used to move synthetic aerosol features and generate a pair of synthetic

backscatter images. In addition, one can easily calculate the mean and the

standard deviation of the velocity fields, and compare them with the velocities

estimated by the cross-correlation algorithm. Thus, the synthetic wind velocity

fields are useful to test the performance of the cross-correlation algorithm.

Literature Review

The cross-correlation method has been applied in various fields of study.

For example, Leese et al. (1971) applied it to geosynchronous satellite images to

derive wind from cloud motion. It has also been used to find the glacier surface

velocity estimation. According to Schubert et al. (2010), the glacier surface velocity

can be estimated by using two image pairs separated by 11 days, acquired by using
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the German sensor TerraSAR-X, and applying traditional cross-correlation

optimization. The glacier surface velocity estimation was performed using the

cross-correlation optimization and a dense image-matching algorithm based on

complex wavelet decomposition, and the results show that the cross-correlation

method is probably preferable to the wavelet-based algorithm for the glacier surface

velocity estimation using repeat TerraSAR-X images (Schubert et al., 2013).

The cross-correlation technique can also be used to estimate surface

displacements on mass movements from repeat optical images (Debella-Gilo and

Kääb, 2011). According to Debella-Gilo and Kääb (2012), three typical mass

movement types, rockglacier creep, glacier flow, and land sliding, were estimated by

using the least square matching (LSM) and normalized cross-correlation, and the

accuracy of displacement estimation improved by over 90% under ideal (simulated)

circumstances.

The cross-correlation method can also be used to monitor seismic

activities. Yun et al. (2009) applied the cross-correlation method to hydroacoustic

data from the International Monitoring System arrays in the Indian Ocean to study

the earthquake sequence.

Particle image velocimetry (PIV),6 is another field of study that utilies

this technique. The direct cross-correlation of image fields was introduced to

improve the performance of PIV in measuring instantaneous velocity fields (Keane

and Adrian, 1992). One of the examples of PIV schemes is to estimate bubble

velocity fields. According to Cheng et al. (2005), the recursive cross-correlation was

the best measurement of bubble motion in bubble plumes among several PIV

schemes tested. Another example is flow measurements in a blood-perfused

6An optical method of flow visualization to obtain instantaneous velocity and related
properties in fluids.
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collagen vessel. According to Antoine et al. (2013), advanced PIV cross-correlation

methods were applied to measure the flow velocities in blood perfused hydrated

tissue-representative microvessels using x-ray images.

In addition to these fields of study, the cross-correlation algorithm has

been applied several times to atmospheric lidar data to remotely estimate wind

velocity profiles in the planetary boundary layer. The earliest work was published

by Eloranta et al. (1975). The radial and transverse components of the wind

velocity in the convective boundary layer was estimated and compared to data from

a bivane anemometer installed on a tower and within the scanning region of the

lidar (Kunkel et al., 1980). The lidar measurements of wind velocity in the

atmospheric boundary layer has also been compared to winds derived from

radar-tracked pilot balloons (Sroga et al., 1980). Other related works include

Hooper and Eloranta (1986), Kolev et al. (1988), Sasano et al. (1982) and Piironen

and Eloranta (1995). Migration of the technique to derive two-component

horizontal vector wind fields was done by Mayor and Eloranta (2001). Comparison

of the resulting vectors to sonic anemometer data was done by Mayor et al. (2012)

and with Doppler lidar data by Mayor et al. (2013). While significant experimental

work has been conducted and collectively suggests viability of the technique, the

performance of the technique has not been tested prior to this thesis research with

simulated aerosol and wind fields.

A distinction is that in PIV discrete particles exist with relatively large

areas of nothing between them. The velocity is determined based only on the

movement of the particles which are good tracers of the flow. Lidar images do not

show individual particles, but contain backscatter intensity everywhere. Therefore,

the wind velocity is estimated based on the movement of macroscopic aerosol

features (i.e., plumes). When computing the cross-correlation function, all areas
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within the interrogation window contribute to the cross-correlation function but not

equally. For example, the brighter aerosol features are more likely to dominate over

the dimmer ones. Therefore, it is possible that the motion of the bright features

biases the answer. These features have larger powers (product of the area and the

intensity), compared to the surrounding regions. Thus, the hypothesis of this thesis

is that the displacement vector calculated by the cross-correlation algorithm is

more accurately described as the power-weighted average velocity, instead of the

area-weighted average velocity described by Schols and Eloranta (1992).

Purpose of Study

As described in the previous section, the cross-correlation algorithm has

been applied many times previously to real atmospheric lidar data and efforts made

to validate the results by comparing with other velocity measurements from other

remote and in situ sensors. Such experiments tend to be infrequent, expensive, and

present challenges when making the comparisons of wind velocities. For example,

the accuracy, precision, location, and resolution of the different forms of wind

measurements usually differs substantially. Furthermore, data collection requires

significant periods of time to sample a variety of wind and aerosol conditions.

By creating synthetic aerosol and wind fields in a computer, input data

to the cross-correlation is controlled rather than dependent on the atmosphere. In

other words, the methods used herein allow the algorithm to be tested in a highly

controlled fashion. Furthermore, the velocity field for the entire block area is known

and a measure of the central tendency (such as the mean) of the entire velocity

field can be calculated. Because of the uniqueness of horizontally scanning lidar

aerosol data, no other form of wind measurement can provide the spatial wind field

that is needed to calculate the correct answer. Therefore, the purpose of this study
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is to evaluate the performance of a cross-correlation algorithm from a new approach

involving the generation of synthetic images and wind fields.

Hypothesis

The cross-correlation algorithm is based on finding a single peak location

of the cross-correlation function, described by Eloranta et al. (1975). According to

Schols and Eloranta (1992), the displacement vectors calculated by the

cross-correlation algorithm is equal to the area-averaged velocities of the wind.

However, the peak of the cross-correlation function is likely sensitive to the motion

of predominant features in the interrogation window that have larger size and

higher intensities.



CHAPTER II

ANALYTICAL STUDIES

In practice, the cross-correlation functions for lidar backscatter images

are usually calculated numerically by the fast Fourier transform (FFT). However,

for some simple cases, one can find the cross-correlation function analytically, and

find an exact solution of the resultant displacement vector. In this section, the

cross-correlation algorithm is limited to two types of highly idealized features, a

Gaussian feature and a rectangular pulse, placed in an interrogation window. The

Gaussian feature has an intensity profile that obeys the Gaussian function.

Gaussian is a reasonable idealization because the turbulent diffusion of aerosol

particles results in Gaussian distributions of particle concentration in the case of

idealized uniform flow with homogeneous turbulence (Arya, 1999). The rectangular

pulse is a feature with constant intensity. Rectangular features are of interest

because of the discrete nature of digital data. Although the structure of aerosol

features in actual lidar backscatter images are much more complex, these cases

show how the cross-correlation function is calculated and they give some insights

about the performance of the cross-correlation algorithm for extremely idealized

cases.

28
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Analytical Approaches Using
a Gaussian Feature

Gaussian Integrals

To calculate the cross-correlation functions of such backscatter images,

the following integral must be evaluated.

I =

∞∫
−∞

e−λx
2

dx. (1)

This type of integral can be evaluated analytically. (Details of the derivation are in

Appendix A.) The result is

I =

∞∫
−∞

e−λx
2

dx =

√
π

λ
. (2)

Suppose the Gaussian function is instead e−λ(x−c)
2

where c is a constant. Then, the

position of the peak is shifted c units from the origin. If c is positive, the peak is

shifted to the positive x direction. On the other hand, if c is negative, the peak is

shifted to the negative x direction. However, the size and the shape of the Gaussian

function is unaltered, so the result of the integral must be the same. That is

∞∫
−∞

e−λ(x−c)
2

dx =

√
π

λ
. (3)

This equation is also helpful to find the cross-correlation function analytically.

One-Dimensional Case in
a Uniform Flow

Suppose that there is only one Gaussian feature in a 1-D space, and the

Gaussian feature is at the origin, x = 0, at time t1. Then, the backscatter image
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f1(x) at time t1 can be expressed as

f1(x) = I0e
−x2 , (4)

where I0 is the peak backscatter intensity of the Gaussian feature. Figure 13a

shows the backscatter image at time t1 in the units of I0. In this plot, the vertical

axis represents the backscatter intensity, and the horizontal axis represents the

location in the 1-dimensional space. Suppose further that the Gaussian feature

moves 10 units to the right in the time interval ∆t = t2 − t1. Then, the backscatter

image f2(x) at time t2 can be expressed as

f2(x) = I0e
−(x−10)2 , (5)

where I0 is the peak backscatter intensity of the Gaussian feature. Figure 13b

shows the backscatter image at time t2.

The 1-D cross-correlation function, rx, applied to these images can be

calculated analytically. (Details of the derivation are in Appendix A.) The result is

rx =

√
π

2

I20
S1S2

e−
(x+10)2

2 , (6)

where I0 is the peak intensity of the Gaussian feature, S1 is the standard deviation

of f1(x), and S2 is the standard deviation of f2(x). Before plotting the

cross-correlation function, let xlag = −x for the lag. Then the cross-correlation

function rxlag can be expressed as

rxlag =

√
π

2

I20
S1S2

e−
(−xlag+10)2

2 (7)
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or

rxlag =

√
π

2

I20
S1S2

e−
(xlag−10)2

2 . (8)

 

 

x 

f1 (x) 

(a) 1-D Gaussian feature at t1.

 

 

x
 

f2 (x) 

(b) 1-D Gaussian feature at t2.

Figure 13. 1-dimensional Gaussian feature moving at constant ve-
locity. At time t1, the center of the Gaussian feature is at the origin.
The Gaussian feature is moved 10 units in the positive x-direction
in the time interval ∆t = t2 − t1.



32

That is, the cross-correlation function of 1-D Gaussian feature moving at constant

rate is also a 1-D Gaussian function. However, the Gaussian is broadened by the

term e−
(xlag−10)2

2 rather than e−(xlag−10)
2
. Figure 14 shows the cross-correlation

function rx as a function of xlag for the 1-D Gaussian feature displaced by 10 units

in the time interval ∆t = t2 − t1.

 

 

xlag 

rx 

Figure 14. The cross-correlation function for given 1-D Gaussian
feature. The peak location of the cross-correlation function repre-
sents the displacement, 10 units in the positive x-direction.

The peak location of the cross-correlation function rxlag represents the

displacement vector ∆~x in the time interval t1 and t2. From Figure 14, the location

of the peak of the cross-correlation function is shown at xlag = 10. From this, one

finds that the resultant displacement vector ∆~x, calculated by the cross-correlation

algorithm, is shown at 10 units in the positive x-direction. Since the resultant

displacement vector is exactly equal to the displacement vector of the given
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Gaussian feature, one can conclude that the cross-correlation algorithm works

perfectly for a 1-D Gaussian feature moving at constant velocity.

Two-Dimensional Case in
a Uniform Flow

The concepts of the 1-D case, described above, can be extended to the

2-D case. Suppose that there is only one Gaussian feature in a 2-D space, and the

Gaussian feature is at the origin, (x, y) = (0, 0), at time t1. Then, the backscatter

image f1(x, y) at time t1 can be expressed as

f1(x, y) = I0e
−(x2+y2), (9)

where I0 is the peak backscatter intensity of the Gaussian feature. Figure 15a

shows the backscatter image at time t1, in the units of I0. In this plot, the

backscatter intensity is expressed by different colors. The red color represents the

higher intensity compared to the blue color. Suppose further that the Gaussian

feature moves 10 units to the right (positive x direction) and 10 units upward

(positive y direction) in the time interval ∆t = t2 − t1. Then, the backscatter image

f2(x, y) at time t2 can be expressed as

f2(x, y) = I0e
−[(x−10)2+(y−10)2], (10)

where I0 is the peak backscatter intensity of the Gaussian feature. Figure 15b

shows the backscatter image at time t2. The 2-D cross-correlation function rx,y

applied to these images can be calculated analytically, similar to that of 1-D

Gaussian features (Details of the derivation are in Appendix A.) The result is

rx,y =
πI20

2S1S2

e
−
[
(x+10)2+(y+10)2

2

]
, (11)
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where I0 is the peak intensity of the Gaussian feature, S1 is the standard deviation

of f1(x, y), and S2 is the standard deviation of f2(x, y). Next, let xlag = −x and

ylag = −y for the lags. Then the cross-correlation function rxlag ,ylag can be

expressed as

rxlag ,ylag =
πI20

2S1S2

e
−
[
(−xlag+10)2+(−ylag+10)2

2

]
(12)

or

rxlag ,ylag =
πI20

2S1S2

e
−
[
(xlag−10)2+(ylag−10)2

2

]
. (13)

That is, as in the 1-D case, the cross-correlation function of 2-D Gaussian feature

moving at a constant rate is also a 2-D Gaussian function and the Gaussian is

broadened by the term, e
−
[
(xlag−10)2+(ylag−10)2

2

]
rather than e−[(xlag−10)

2+(ylag−10)2].

Figure 15c shows the cross-correlation function rxlag ,ylag as a function of xlag and

ylag for the 2-D Gaussian feature displaced by 10 units to the right (positive x

direction) and 10 units upward (positive y direction) between the time interval

∆t = t2 − t1. Figure 15c shows that the peak of the cross-correlation function

represents the displacement of the Gaussian feature in the time interval

∆t = t2 − t1. Thus, one can conclude that the cross-correlation algorithm works

perfectly for a 2-D Gaussian feature moving at constant velocity, although the

cross-correlation function is broadened by the term e
−
[
(xlag−10)2+(ylag−10)2

2

]
.
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(a) 2-D Gaussian feature at t1. (b) 2-D Gaussian feature at t2.

(c) Cross-correlation function.

Figure 15. 2-D Gaussian feature moving at constant velocity. At
time t1, the center of the Gaussian feature is at the origin. The
Gaussian feature is moved 10 units in the positive x-direction and
10 units in the positive y-direction in the time interval ∆t = t2− t1.
The peak location of the cross-correlation function represents the
displacement.
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Higher Dimensional Case in
a Uniform Flow

One can extend the discussion for a 3-D Gaussian feature at the origin,

(x, y, z) = (0, 0, 0), that is moved to the coordinates (x, y, z) = (10, 10, 10), in the

time interval ∆t = t2 − t1. In this case, the backscatter images f1(x, y, z) and

f2(x, y, z) can be expressed as

f1(x, y, z) = I0e
−(x2+y2+z2) (14)

f2(x, y, z) = I0e
−[(x−10)2+(y−10)2+(z−10)2], (15)

where I0 is the peak backscatter intensity of the Gaussian feature. The

cross-correlation function applied for these images can be calculated the same

procedure with triple integrals. Let xlag = −x, ylag = −y, and zlag = −z for the

lags. Then, the cross-correlation function rxlag ,ylag ,zlag can be expressed as

rxlag ,ylag ,zlag =
π

3
2 I20

2
3
2S1S2

e
−
[
(xlag−10)2+(ylag−10)2+(zlag−10)2

2

]
, (16)

where I0 is the peak backscatter intensity of the Gaussian feature, S1 is the

standard deviation of f1(x, y, z), and S2 is the standard deviation of f2(x, y, z). As

previous cases, the cross-correlation function rxlag ,ylag ,zlag is also the Gaussian that

is broadened by the term

e
−
[
(xlag−10)2+(ylag−10)2+(zlag−10)2

2

]
(17)

rather than

e−[(xlag−10)
2+(ylag−10)2+(zlag−10)2], (18)
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and the peak location of rx,y,z represents the displacement of the Gaussian feature

in the time interval ∆t = t2 − t1. Finally, this section is concluded by generalizing

the cross-correlation function rN for N-dimensional (N-D) Gaussian feature moving

at the constant velocity. From the results,

rxlag =

√
π

2

I20
S1S2

e−
(xlag−10)2

2 (19)

is the equation for the 1-D case,

rxlag ,ylag =
πI20

2S1S2

e
−
[
(xlag−10)2+(ylag−10)2

2

]
(20)

is for the 2-D case, and

rxlag ,ylag ,zlag =
π

3
2 I20

2
3
2S1S2

e
−
[
(xlag−10)2+(ylag−10)2+(zlag−10)2

2

]
(21)

is for the 3-D case. From the inspection of these expressions, the cross-correlation

function rN for N-D case can be expressed as

rN =

(
π
N
2 I20

2
N
2 S1S2

)
e
−
[∑N

i=1(xilag
−di)

2

2

]
, (22)

where I0 is the peak intensity of the N-D Gaussian feature, S1 and S2 are the

standard deviations of the images, xilag are the lags for the i-th dimensions, and di

are the i-th components of the displacement vector of the Gaussian feature. Peak

locations of these functions represent the displacement of given Gaussian features.

These results show that the cross-correlation algorithm works perfectly for a

Gaussian feature (any dimension) moving at the constant velocity, although the

cross-correlation function is broadened.
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One-Dimensional Diffused Gaussian
Feature in a Uniform Flow

Suppose a 1-D Gaussian feature is moving at a constant rate in the

positive x-direction and at the same time diffused uniformly. In this case, it is also

possible to find the cross-correlation function analytically. Here one can use the

1-D Gaussian feature at the origin at time t1. Then, the backscatter image f1(x) at

time t1 can be expressed as

f1(x) = I0e
−x2 , (23)

where I0 is the peak backscatter intensity of the Gaussian feature. Figure 16a

shows the backscatter image at time t1, in the units of I0. Suppose further that the

Gaussian feature moves 10 units to the right in the time interval ∆t = t2− t1 and is

diffused uniformly. Then, the backscatter image f2(x) at time t2 can be expressed

as

f2(x) =
I0√

2
e
−(x−10)2

2 , (24)

where I0 is the peak backscatter intensity of the Gaussian feature. The factor 1
2

in

the exponential term represents diffusion of the Gaussian feature and the coefficient

1√
2

normalizes the Gaussian feature. That is,

∞∫
−∞

f2(x) dx =

∞∫
−∞

f1(x) dx. (25)

Figure 16b shows the backscatter image at time t2.

As in the previous sections, the cross-correlation function rx applied to

these images can be calculated analytically. (Details of the derivation are in
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Appendix A.) The result is

rx =

√
π

3

I20
S1S2

e−
(x+10)2

3 . (26)
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(a) 1-D Gaussian feature at t1.
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(b) 1-D diffused Gaussian feature at t2.

Figure 16. 1-D Gaussian feature moving at constant velocity and
diffused uniformly. At time t1, the center of the Gaussian feature is
at the origin. The center Gaussian feature is moved 10 units in the
positive x-direction in the time interval ∆t = t2 − t1.
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By defining xlag = −x for the lag, the cross-correlation function rxlag can be

expressed as

rxlag =

√
π

3

I20
S1S2

e−
(−xlag+10)2

3 (27)

or

rxlag =

√
π

3

I20
S1S2

e−
(xlag−10)2

3 , (28)

where I0 is the peak backscatter intensity of the given Gaussian feature, S1 is the

standard deviation of f1(x), and S2 is the standard deviation of f2(x). That is, the

cross-correlation function of 1-D Gaussian feature moving at constant rate and

diffused uniformly is also a 1-D Gaussian function. However, the Gaussian is

broadened by the term e−
(xlag−10)2

3 rather than e−(xlag−10)
2

or e
−(xlag−10)2

2 . Figure 17

shows the cross-correlation function rx as a function of xlag for the 1-D Gaussian

feature displaced by 10 units and diffused uniformly in the time interval

∆t = t2 − t1. In Figure 17, the location of the peak of the cross-correlation function

represents the displacement of the Gaussian feature in this time interval. Thus, the

cross-correlation algorithm works perfectly for a 1-D Gaussian feature moving at

the constant velocity and diffusing uniformly.
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xlag 

rx 

Figure 17. The cross-correlation function for given 1-D diffused
Gaussian feature. The peak location of the cross-correlation func-
tion represents the displacement, 10 units in the positive x-direction.
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Two-Dimensional Diffused Gaussian
Feature in a Uniform Flow

The concepts of the 1-D diffused Gaussian feature, described above, can

be extended to the 2-D case. Suppose that there is only one Gaussian feature in a

2-D space, and that the Gaussian feature is at the origin, (x, y) = (0, 0), at time t1.

Then, the backscatter image f1(x, y) at time t1 can be expressed as

f1(x, y) = I0e
−(x2+y2), (29)

where I0 is the peak backscatter intensity of the Gaussian feature. Figure 18a

shows the backscatter image at time t1, in the units of I0. Suppose further that the

center of the Gaussian feature moves 10 units to the right (positive x direction), 10

units to the upward (positive y direction), and the Gaussian feature diffuses

uniformly in the xy-plane in the time interval ∆t = t2 − t1. Then, the backscatter

image f2(x, y) at time t2 can be expressed as

f2(x, y) =
I0
2
e−

[(x−10)2+(y−10)2]
2 , (30)

where I0 is the peak backscatter intensity of the Gaussian feature. Figure 18b

shows the backscatter image at time t2. As in the 1-D case, the factor 1
2

in the

exponential term represents diffusion and the coefficient 1
2

normalizes the Gaussian

feature. The 2-D cross-correlation function, rx,y, applied to these images can be

calculated similarly in the 1-D case. (Details of the derivation are in Appendix A.)

The result is

rx,y =
πI20

3S1S2

e
−
[
(x+10)2+(y+10)2

3

]
(31)
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By defining xlag = −x and ylag = −y for the lags, the cross-correlation function

rxlag ,ylag can be expressed as

rxlag ,ylag =
πI20

3S1S2

e
−
[
(−xlag+10)2+(−ylag+10)2

3

]
(32)

or

rxlag ,ylag =
πI20

3S1S2

e
−
[
(xlag−10)2+(ylag−10)2

3

]
, (33)

where I0 is the peak backscatter intensity of the given Gaussian feature, S1 is the

standard deviation of f1(x, y), and S2 is the standard deviation of f2(x, y). That is,

as in the 1-D case, the cross-correlation function of a 2-D Gaussian feature moving

at constant rate and diffused uniformly in the xy-plane is also a 2-D Gaussian

function. However, the Gaussian is broadened by the term e
−
[
(xlag−10)2+(ylag−10)2

3

]

rather than e−[(xlag−10)
2+(ylag−10)2] or e

−
[
(xlag−10)2+(ylag−10)2

2

]
. Figure 18c shows the

cross-correlation function rx,y as a function of xlag and ylag for the 2-D Gaussian

feature displaced by 10 units to the right (positive x direction), 10 units upward

(positive y direction), and diffused uniformly in the xy-plane, in the time interval

∆t = t2 − t1. In Figure 18c, the peak of the cross-correlation function represents

the displacement of the Gaussian feature in the time interval ∆t = t2 − t1. Thus, as

in the 1-D case, the cross-correlation algorithm works perfectly for a 2-D Gaussian

feature moving at the constant velocity and diffusing uniformly.
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(a) 2-D Gaussian feature.
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(b) Diffused Gaussian feature at t2.
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(c) Cross-correlation function.

Figure 18. 2-D Gaussian feature moving at constant velocity and
diffused uniformly in the xy-plane. At time t1, the center of the
Gaussian feature is at the origin. The Gaussian feature is moved
10 units in the positive x-direction and 10 units in the positive y-
direction in the time interval ∆t = t2− t1. The peak location of the
cross-correlation function represents the displacement.
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Higher Dimensional Diffused Gaussian
Feature in a Uniform Flow

The concepts of the 1-D diffused Gaussian feature, described above, can

be extended to the N-D Gaussian feature moving at constant rate and diffused

uniformly. Let f1 represent the N-D Gaussian feature at the origin

f1 = I0e
−(
∑N
i=1 x

2
i ) (34)

and f2 represent the N-D Gaussian feature moving di units in each dimension and

diffused uniformly.

f2 =
I0

2
N
2

e
−
[∑N

i=1(xi−di)
2

2

]
(35)

From inspections of previous results, the cross-correlation function rN applied to f1

and f2 can be expressed as

rN =

(
π
N
2 I20

3
N
2 S1S2

)
e
−
[∑N

i=1(xilag
−di)

2

3

]
, (36)

where I0 is the peak backscatter intensity of the given N-D Gaussian feature, S1 is

the standard deviation of f1, S2 is the standard deviation of f2, and di is the i-th

components of the displacement of the Gaussian feature. That is, one can find the

cross-correlation function and the displacement vector analytically for the N-D

Gaussian feature as long as it is moving at a constant velocity and diffused

uniformly in all directions. The peak of the cross-correlation function represents

the displacement vector of a given Gausian feature, and hence, the cross-correlation

algorithm works perfectly in these situations.
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Analytical Approaches Using
a Rectangular Pulse

Contour Integration

As done with previous examples of Gaussian features, one can evaluate

the cross-correlation function analytically for a rectangular pulse moving at

constant velocity. To calculate the cross-correlation function for a rectangular

pulse, one evaluates the following integral.

I =

∞∫
0

sin (λx)

x
dx, (37)

where λ is a positive constant. To evaluate this integral, the “Calculus of

Residues”, described by Arfken and Weber (2001) and Mathews and Walker (1970),

is applied. (Details of the derivation are in Appendix B.) The result is

I =

∫ ∞
0

sin (λx)

x
dx =

π

2
. (38)

This equation is helpful to evaluate the cross-correlation function for rectangular

pulses moving at constant velocity.

One-Dimensional Rectangular Pulse
in a Uniform Flow

Suppose that there is only 1 rectangular pulse in a 1-D space, and the

center of the rectangular pulse is at the origin, x = 0, at time t1. Then, the

backscatter image f1(x) at time t1 can be expressed as

f1(x) =

 I0 : −a
2
≤ x ≤ a

2

0 : otherwise
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where I0 is the peak backscatter intensity of the rectangular pulse. Figure 19a

shows the backscatter image at time t1. In this plot, the vertical axis represents the

backscatter intensity, and the horizontal axis represents the location in the 1-D

space. Suppose further that the rectangular pulse moves 10 units to the right

between the time interval ∆t = t2 − t1. Then, the backscatter image f2(x) at time

t2 can be expressed as

f2(x) =

 I0 : −a
2

+ 10 ≤ x ≤ a
2

+ 10

0 : otherwise

where I0 is the peak backscatter intensity of the rectangular pulse. Figure 19b

shows the backscatter image at time t2.

The 1-D cross-correlation function, rxlag , applied to these images can be

calculated analytically. (Details of the derivation are in Appendix B.) Let

xlag = −x. Then the cross-correlation function rxlag can be expressed as

rxlag =


(

I20
S1S2

)
a+

(
I20
S1S2

)
(xlag − 10) : 10− a ≤ xlag ≤ 10(

I20
S1S2

)
a−

(
I20
S1S2

)
(xlag − 10) : 10 ≤ xlag ≤ 10 + a

where I0 is the peak backscatter intensity of the given rectangular pulse, a is the

width of the rectangular pulse, S1 is the standard deviation of f1(x), and S2 is the

standard deviation of f2(x). That is, the cross-correlation function of a rectangular

pulse moving at a constant rate is a triangular function. The base of the triangle is

2a, that is as twice as large as the width of the given rectangular pulse. The peak

of the triangle is proportional to the square of the peak intensity I0 of the given

rectangular pulse. Figure 20 shows the cross-correlation function rx as a function of

xlag for the rectangular pulse of width a displaced by 10 units between the time
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interval ∆t = t2 − t1. From Figure 20, one can see that the location of the peak of

the cross-correlation function represents the displacement of the rectangular pulse

 

x 

I0 

0 

2 
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a 

f1(x) 

(a) 1-D rectangular pulse at t1.
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f2(x) 

I0 
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a 
+ 10 
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(b) 1-D rectangular pulse at t2.

Figure 19. 1-D rectangular pulse moving at constant velocity. At
time t1, the center of the rectangular pulse is at x = 0. The rectan-
gular pulse is moved 10 units in the positive x-direction in the time
interval ∆t = t2 − t1.
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in the time interval between t1 and t2. Thus, the cross-correlation algorithm works

perfectly for the 1-D rectangular pulse moving with constant velocity.

 
rx 

xlag 
0 10  +  a 10       a 

I0
2 

S1 S2
 

Figure 20. The cross-correlation function for a given 1-D rect-
angular pulse. The peak location of the cross-correlation function
represents the displacement, 10 units in the positive x-direction.

Two-Dimensional Rectangular Pulse
in a Uniform Flow

The concepts of the 1-D case, described above, can be extended to the

2-D case. Suppose that there is only 1 rectangular pulse in a 2-D space, and the

center of the rectangular pulse is at the origin, (x, y) = (0, 0), at time t1. Then, the

backscatter image f1(x, y) at time t1 can be expressed as

f1(x, y) =

 I0 : −a
2
≤ x ≤ a

2
: − b

2
≤ y ≤ b

2

0 : otherwise
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where I0 is the peak backscatter image of the rectangular pulse. Figure 21a shows

the backscatter image at time t1, in the units of I0. In this plot, the red-color

rectangle represents the rectangular pulse of the intensity I0 and the blue region

represents the zero intensity. Suppose further that the rectangular pulse moves 10

units to the right (positive x direction) and 10 units upward (positive y direction)

in the time interval ∆t = t2 − t1. Then, the backscatter image f2(x, y) at time t2

can be expressed as

f2(x, y) =

 I0 : 10− a
2
≤ x ≤ 10 + a

2
: 10− b

2
≤ y ≤ 10 + b

2

0 : otherwise

where I0 is the peak backscatter intensity of the rectangular pulse. Figure 21b

shows the backscatter image at time t2. The 2-D cross-correlation function rxlag ,ylag

applied to these images can be calculated analytically. (Details of the derivation is

in Appendix B.) Let xlag = −x, and ylag = −y. Then the cross-correlation function

rxlag ,ylag can be expressed as

rxlag,ylag =



(
I20
S1S2

)
[a+ (xlag − 10)][b+ (ylag − 10)] : 10− a ≤ xlag ≤ 10 : 10− b ≤ ylag ≤ 10(

I20
S1S2

)
[a− (xlag − 10)][b− (ylag − 10)] : 10 ≤ xlag ≤ 10 + a : 10 ≤ ylag ≤ 10 + b(

I20
S1S2

)
[a+ (xlag − 10)][b− (ylag − 10)] : 10− a ≤ xlag ≤ 10 : 10 ≤ ylag ≤ 10 + b(

I20
S1S2

)
[a− (xlag − 10)][b+ (ylag − 10)] : 10 ≤ xlag ≤ 10 + a : 10− b ≤ ylag ≤ 10

where I0 is the peak backscatter intensity of the given rectangular pulse, a is the

width of the rectangular pulse, b is the height of the rectangular pulse, S1 is the

standard deviation of f1(x, y), and S2 is the standard deviation of f2(x, y). That is,

the cross-correlation function of a rectangular pulse moving at a constant rate is a
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pyramid-shape function of rhombus base. The diagonals of the rhombus base are 2a

and 2b, twice as large as the dimensions of the given rectangular pulse. The peak of

the pyramid-shape function is proportional to the square of the peak intensity I0 of

the given rectangular pulse. Figure 21c shows the cross-correlation function rx,y as

a function of xlag and ylag for the rectangular pulse of width a = 20 units and

height b = 10 units displaced by 10 units in both x and y directions in the time

interval ∆t = t2 − t1. From Figure 21c, one can see that the location of the peak of

the cross-correlation function represents the displacement of the rectangular pulse

between the time interval t1 and t2. In addition, the diagonals of the rhombus base

are 2a = 40 units and 2b = 20 units. Thus, as in the case of the 1-D rectangular

pulse, the exact displacement of the 2-D rectangular pulse moving with constant

velocity is correctly identified. That is, the cross-correlation algorithm works

perfectly for a 2-D rectangular pulse moving with constant velocity in the xy-plane.
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(a) 2-D rectangular pulse at t1.
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(b) 2-D rectangular pulse at t2.
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(c) Cross-correlation function.

Figure 21. 2-D rectangular pulse moving at constant velocity. At
time t1, the center of the rectangular pulse is at the origin. The
rectangular pulse is moved 10 units in the positive x-direction and
10 units in the positive y-direction in the time interval ∆t = t2− t1.
The peak location of the cross-correlation function represents the
displacement.



CHAPTER III

METHODOLOGY

To test the performance of the cross-correlation algorithm as applied to

atmospheric lidar data, a 2-D synthetic wind velocity field is applied to a synthetic

backscatter image to displace each pixel of the image to a new location. Next,

bicubic interpolation is applied to determine the synthetic backscatter intensity at

each element of the Cartesian grid. This results in a pair of synthetic backscatter

images and one corresponding wind velocity field. Then, the cross-correlation

algorithm is applied to this pair of images, and the displacement vector is

calculated. The tests are repeated on 100 different pairs of synthetic backscatter

images, and the mean and the standard deviation of the resulting displacement

vectors due to different synthetic backscatter images are calculated. Finally, the

mean resultant displacement vector is compared to the known mean wind velocity

field. The test is performed to investigate (1) the performance of the

cross-correlation algorithm for various velocity fields that are the sum of various

analytical functions and turbulent fluctuations, (2) the performance of the

cross-correlation algorithm for a variety of turbulent intensities, and (3) the

performance of the cross-correlation algorithm in the case where a predominant

feature is cut by the edge of a lidar scan. All computer programs to conduct these

experiments were written in Interactive Data Language (IDL).

53
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Different Types of Wind Velocity Fields

Grid Space and Time Interval

The grid spacing (∆x,∆y) and the time interval ∆t of the synthetic

images are set so that the experiment is comparable with actual lidar backscatter

images and wind velocity fields. The grid space and the time interval are adjustable

parameters. For example, Mayor et al. (2012) used the grid space ∆x = ∆y = 10

m, and the time interval ∆t = t2 − t1 of 17 s. Here, the grid spacing is set so that 1

pixel of an image corresponds to 10 m, and the time interval ∆t = t2 − t1 of 10 s.

In this case, the motion of a feature of 1 pixel between two consecutive frames is

equivalent to the displacement of 10 m in the time interval of 10 s, and the

corresponding velocity is 1.0 m s−1. Using these dimensions, it is easy to compare

synthetic backscatter images and actual lidar images.

Synthetic Backscatter Image

A synthetic backscatter image is created by generating a 2-dimensional

array filled with a uniform distribution of random numbers (Figure 22a). The

backscatter intensities in the image are represented by colors of the plot. The red

and blue colors represent higher and lower backscatter intensities respectively. No

coherent features are apparent in the image. Spatially coherent features are created

by applying a 25× 25 pixel boxcar smooth shown in Figure 22b. These features

mimic the background of the atmospheric aerosol. 25 pixels at 10 m per pixel

produces coherent features with characteristic length scales of 250 m. Next,

Gaussian features were randomly placed in the interrogation window, as shown in

Figure 22c. These Gaussian features represent plumes of atmospheric aerosol from

nearby sources, for example agricultural equipment working beneath the scan

plane, and are a common feature in real lidar data. In real lidar backscatter
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images, such predominant features are more than 10 times brighter than the

background, so the intensities of these Gaussian features are about the same

relative brightness as the ones found in the real lidar backscatter images. At this

point, the intensities of the synthetic backscatter image are comparable to those of

the real lidar data. However, the shapes of the features in the synthetic backscatter

image at this point are not similar to those of the real ones. To make the synthetic

backscatter image more realistic, a synthetic turbulent perturbation fields, as

generated by the spectral tensor turbulent model of Mann (1994) and Mann (1998),

is used to diffuse the features in the interrogation window. After the diffusion, the

synthetic backscatter image becomes the one shown in Figure 22d. These images

are 400× 400 pixels that correspond to 4× 4 km area. From these images

100× 100 pixels subsets are selected for input of the cross-correlation algorithm.
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(a) 2-D array filled with random numbers. (b) Image after 25×25 boxcar smoothing.

(c) Image after adding Gaussian features. (d) Image after turbulent diffusion.

Figure 22. Results of steps taken to create a synthetic backscatter
image. Panel a shows the image created by 2-D array filled with
random numbers. Panel b shows the image after smoothing the
2-D array with a 2-D moving average. Panel c shows the image
after adding Gaussian features. Panel d is the image after apply-
ing the synthetic turbulent perturbation field. Panel d is the syn-
thetic backscatter image for testing the performance of the cross-
correlation algorithm.
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Synthetic Wind Velocity Fields

A synthetic 2-D, 2-component, wind velocity field is generated with an

analytical function, or a combination of analytical function and synthetic turbulent

perturbations as produced by a model described by Mann (1994) and Mann (1998).

To describe such wind velocity fields, let the 2-dimensional position vector

~r = (x, y), where x and y are the east-west and the north-south components of the

position vector ~r. Next, let u(x, y) and v(x, y) be the east-west and the north-south

components of the wind velocity (u, v), respectively. Then, u(x, y) and v(x, y) can

be expressed as

u(x, y) = u0(x, y) + u′(x, y) (1)

and

v(x, y) = v0(x, y) + v′(x, y), (2)

where u0(x, y) and v0(x, y) are analytical functions of x and y and u′(x, y) and

v′(x, y) are turbulent perturbations. Figure 23 shows one example of wind velocity

fields. Here, the wind velocity field is created by a combination of a uniform flow

field (10 pixels/frames) and turbulent perturbation field. The arrows and colors in

Figure 23a represent directions of the wind velocity field and speeds (magnitude of

the wind velocity) at the given pixel locations, respectively. Turbulent

perturbations u′(x, y) and v′(x, y) can be increased by increasing the aerodynamic

roughness length,1 z0. For experiments of different velocity fields, one can use the

typical value z0 = 0.5 m at the altitude of 30 m.

1A parameter used to model the vertical profile of mean horizontal wind speed near the
ground. It is equivalent to the height where the wind speed theoretically becomes zero,
and no longer follows a log wind profile (Stull, 1988).
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Figure 23. The velocity field created by a uniform flow field and syn-
thetic turbulent perturbation field. Panel a and b show the velocity
field and the streamlines, respectively.
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Creation of the Second Synthetic
Backscatter Image

To create the second image, each pixel in the synthetic backscatter

image is moved to a new location according to the wind vector at the pixel

location. Since the displaced location of the pixel is not likely to fall exactly on a

vertex of the Cartesian grid, bicubic interpolation is applied to create a distribution

of backscatter intensities on the Cartesian grid. After applying the wind velocity

field and the bicubic interpolation, the synthetic backscatter image becomes the

one shown in Figure 24b. Comparing Figures 24a and 24b, one can see that the

features in the first block are displaced to the right (positive x-direction) with

turbulent perturbations. Some features are distorted, but one can recognize most of

them from the first image.
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(a) Synthetic backscatter image at t1.
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(b) Synthetic backscatter image at t2.

Figure 24. Panel a shows the synthetic backscatter image at t1.
Panel b shows the synthetic backscatter image at t2 created by mov-
ing each pixel in Panel a to a new location according to the velocity
field shown in Figure 23, and applying bicubic interpolation.
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Zero-Padding

The cross-correlation function of two images, shown in Figures 24a and

24b, can be computed using the definition of the cross-correlation function rx,y

rx,y =
COV1,2
S1S2

, (3)

where COV1,2 is the covariance of overlapped portions of f1(x, y) and f2(x, y)

(backscatter intensities of the two images), S1 is the standard deviation of f1(x, y),

and S2 is the standard deviation of f2(x, y). In practice, this is done most

efficiently by use of the fast Fourier transform (FFT). The ability to do this is

provided by the Wiener-Khinchin theorem (Bendat and Piersol, 2011). Let Nx

stand for the number of points in the x-direction, Ny the number of points in the

y-direction, kx the wavenumber corresponding to the x-coordinate, and ky the

wavenumber corresponding to the y-coordinate. Then rx,y can be expressed as

rx,y =
FFT−1(FFT1FFT

∗
2 )

S1S2

, (4)

where

FFT1 =

∑Nx
i=1

∑Ny
i=1 f1(x, y)e

−i2π( kxx
Nx

+
kyy

Ny
)

NxNy

(5)

and

FFT2 =

∑Nx
i=1

∑Ny
i=1 f2(x, y)e

−i2π( kxx
Nx

+
kyy

Ny
)

NxNy

. (6)

This method is computationally more efficient than using the covariance method.

However, the FFT method assumes that given images are periodic in order to

integrate over finite domains (Raffel, 2007). This can be circumvented by

zero-padding, that is, the interrogation images are padded with zeros over a domain
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that is at least twice the size of the original signal (Bastiaans, 2000). In the case of

2-D images, the interrogation windows are padded by zeros for three quarters of its

total size (Adrian and Westerweel, 2011). Using such a zero-padded image, one can

avoid errors associated with the assumption of periodicity. Figure 25a represents

the synthetic backscatter image before applying the wind velocity field, called

“block 1”. Here, a subset of 100× 100 pixels of the synthetic backscatter image are

placed at the lower left corner of the input array (200× 200 pixels), and zeros set for

all other regions. Figure 25b shows the synthetic backscatter image after applying

the wind velocity field, and it is called “block 2”. As block 1, 100× 100 pixels of

synthetic backscatter image is placed and set all zeros for the rest of region.

However, the synthetic backscatter image is placed in the upper right of the input

array, instead of the lower left. For comparison, one extracts the corresponding part

of the velocity field as shown in Figure 25c, and the mean and standard deviation

of the velocity vector in the extracted part (100× 100 pixels) are calculated. Now,

the cross-correlation algorithm is applied to the two images, blocks 1 and 2, to

calculate a single displacement vector in the time interval between them.
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(a) Zero-padded image at t1. (b) Zero-padded image at t2.

(c) Velocity field for zero-padded images.

Figure 25. Panels a and b show 100× 100 subsets (blocks 1 and 2,
respectively) that were extracted from images shown in Figure 24
and padded with zeros in preparation for cross-correlation. Panel c
shows the corresponding velocity field for the 100×100 pixel subset
area.
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The Cross-Correlation Algorithm

Let f1(x, y) and f2(x, y) be the backscatter intensities of blocks 1 and 2,

respectively. Then the cross-correlation function rx,y for these images can be

expressed as

rx,y = F−1
[
F1F

∗
2

S1S2

]
, (7)

where F1 is the Fourier transform of f1(x, y), F ∗2 the complex conjugate of the

Fourier transform of f2(x, y), S1 is the standard deviation of f1(x, y), S2 is the

standard deviation of f2(x, y), and F−1 represents the inverse Fourier transform.

The displacement (∆x,∆y) of block 2 can be estimated by the location of the peak

of rx,y. Figure 26 shows the cross-correlation function and the displacement vector

(peak location of the cross-correlation function). From Figure 26, one can see that

the location of the peak of the cross-correlation function indicates the horizontal

component of the displacement.
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(b) Displacement vector.

Figure 26. Cross-correlation function derived from blocks 1 and
2. The peak location of the cross-correlation function indicates the
displacement as shown by the vector in panel b. Note: The cross-
correlation shown in panel b is expanded to ±25 pixels to show more
detail near the peak.
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Multiple Pass Interrogation

The displacement vector, obtained from the peak location of the

cross-correlation function, is based on features that appear in on both blocks 1 and

2. However, some features move out of the interrogation window in the time

interval ∆t = t2 − t1 between these frames. Figure 27a represents blocks 1 and 2 in

this situation. There are three features in block 1 (features 1, 2, and 3) and these

features move at different velocities (shown with arrows in Figure 27a). During the

time interval, ∆t = t2 − t1, feature 3 moves out of the given interrogation window,

and hence disappears in block 2, while the other two features remain in block 2. In

this case, feature 3 does not contribute to the cross-correlation function of blocks 1

and 2, and the resultant displacement vector may be biased because of the

disappearance of feature 3 in block 2. To resolve this problem, one applies

“multiple pass interrogation” described by Raffel (2007). In this approach, the

center of block 2 is displaced according to the displacement vector obtained from

the peak location of the cross-correlation function (initial estimation). The

displacement vector is found again using the cross-correlation function of block 1

and the displaced block 2 (correction of iterative refinement). Finally, by adding

two displacements (initial estimation and correction of iterative method), one

obtains the resultant displacement. Figure 27b shows the schematic of block 1 and

displaced block 2 in this situation. From Figure 27b, one can see that feature 3 is

in the displaced block 2 which contributes to finding the displacement vector. This

technique allows the use of more data points and hence it increases the reliability of

the displacement vector.
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(a) Without multiple pass interrogation.
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Displaced Block 2 

(b) With multiple pass interrogation.

Figure 27. Panel a shows blocks 1 and 2 without the multiple pass
interrogation. In this case, feature 3 moves out in the time interval
∆t = t2 − t1, and does not contribute to calculating the cross-
correlation function. Panel b shows blocks 1 and 2 with multiple
pass interrogation. In this case, Feature 3 appears in both block
1 and displaced block 2, and it contributes to the cross-correlation
function.

The multiple pass interrogation has been used to estimate the wind

velocity vectors by Mayor and Eloranta (2001), and is included in this

investigation. Figures 28a and 28b show the synthetic backscatter images used for

the approach. They are called “new block 1” and “new block 2,”respectively.
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Figure 28a is identical to block 1 but Figure 28b is block 2 displaced by the initial

estimation of the displacement vector. Using new blocks 1 and 2, one can find the

correction of iterative refinement.

(a) Image at t1 for multi-pass approach. (b) Image at t2 for multi-pass approach.

Figure 28. Panel a shows the synthetic backscatter image at t1, “new
block 1”, used in the multi-pass approach. This image is exactly the
same as block 1. Panel b shows the synthetic backscatter image at
t2, “new block 2”, used for multi-pass approach. This image is
created by moving block 2 according to the estimated displacement
vector resulting from the previous non-multi-pass cross-correlation
function.

Polynomial Fit to Obtain Subpixel
Velocity Resolution

An improved velocity estimate can be obtained with the multipass

approach described in the previous section. However, a limitation of resolution of

the cross-correlation function remains. The peak location is given by the integer
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value of pixels, and hence there is an uncertainty of ±1
2

pixels (Adrian and

Westerweel, 2011). To reduce the uncertainty, one can use a polynomial fit of the

cross-correlation function, and estimate the peak location with higher resolution, as

described by Raffel (2007). Applying this technique, one may obtain subpixel

resolution of the correction of iterative refinement, and the accuracy of the result

may be significantly increased. Figure 29a shows the cross-correlation function and

the correction of iterative refinement for the polynomial fitting of the

cross-correlation function. Finally, the displacement vector is estimated by the sum

of the initial estimation and the correction of iterative refinement. Figure 29b

shows the cross-correlation function applied to blocks 1 and 2 with the final result

of the displacement vector. This displacement vector depends on the distribution of

the features in the interrogation window, so N = 100 pairs of synthetic backscatter

images (using different random seeds) are created and the mean and the standard

deviation of the displacement vector are calculated. Figure 29c shows the mean

cross-correlation function and the resultant displacement vector (mean

displacement vector) for N = 100, synthetic backscatter images. By comparing

Figures 29b and 29c, one can see that the cross-correlation function is smoothed

and the peak is well defined if more synthetic backscatter images are used and the

cross-correlation functions are averaged. Finally, the mean of the displacement

vectors, for N = 100 pairs of synthetic backscatter images, is compared with the

mean of the wind velocity field described above.
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(a) Correction of iterative refinement.
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(b) Resultant displacement vector.
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(c) Mean cross-correlation function.

Figure 29. Panel a shows the cross-correlation function derived from
new blocks 1 and 2. The arrow represents the correction used in the
iterative refinement. Panel b shows the cross-correlation function
and the final displacement vector. The final displacement vector is
the sum of the first estimated displacement, the refinement given
by the multi-pass approach and the subpixel approximation. Panel
c shows the mean cross-correlation function and the resultant dis-
placement vector for N = 100 pairs of synthetic backscatter images.
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Effects of Turbulent Intensities

In the previous section, various 2-D velocity fields are used to test the

performance of a cross-correlation algorithm. Let u(x, y) and v(x, y) be the

east-west and the north-south components of the wind velocity (u, v), respectively.

Then, u(x, y) and v(x, y) can be expressed as

u(x, y) = u0(x, y) + u′(x, y) (8)

and

v(x, y) = v0(x, y) + v′(x, y), (9)

where u0(x, y) and v0(x, y) are analytical functions of x and y, and u′(x, y) and

v′(x, y) are turbulent perturbations. To test the performance of the

cross-correlation algorithm for environments without large coherent flow structures,

u0(x, y) and v0(x, y) are held constant while increasing u′(x, y) and v′(x, y) in a

series of experiments. In this case, u(x, y) and v(x, y) can be expressed as

u(x, y) = C1 + u′(x, y) (10)

and

v(x, y) = C2 + v′(x, y), (11)

where C1 and C2 are constants. Turbulent perturbations u′(x, y) and v′(x, y) are

increased by increasing the aerodynamic roughness length z0. According to Stull

(1988), once the aerodynamic roughness length is determined for a particular

surface, it does not change with wind speed, stability, or stress, but it can change if

the roughness elements on the surface change. Table 1 shows the aerodynamic
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roughness lengths for various terrains, and that the aerodynamic roughness length

ranges from 0.0002 meters to a few meters.

Table 1
The Aerodynamic Roughness Length

Terrain description z0 (m)
Open sea, Fetch at least 5 km 0.0002
Mud flats, snow; no vegetation, no obstacles 0.005
Open flat terrain; grass, few isolated obstacles 0.03
Low crops; occasional large obstacles 0.10
High crops; scattered obstacles 0.25
Parkland, bushes; numerous obstacles 0.5
Regular large obstacle coverage (suburb, forest) 1.0
City center with high- and low-rise buildings ≥ 2

The aerodynamic roughness length. Table taken from Dav-
enport et al. (2000).

The magnitude of the turbulent perturbations of the wind velocity fields

(u, v) = (C1 + u′(x, y), C2 + v′(x, y)) (12)

can be increased by increasing the aerodynamic roughness length z0, and the

performance of the cross-correlation algorithm is evaluated. As in the previous

section, N = 100 pairs of synthetic backscatter images are created, and the mean of

the displacement vectors, obtained from the location of the peak of the

cross-correlation function, is compared with the mean of the wind velocity field

described above. Results are shown in the following chapter.
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Effects of the Edge of a Scan Sector

When aerosol features move across the edge of a lidar scan, the wind

velocity estimation via cross-correlation algorithm is different from the expected

value. Figures 30 and 31 show real lidar backscatter images on June 24, 2013 at

California State University Chico, University Farm, when a bright aerosol feature

passed through the right edge of the scan sector. Figure 32 shows the wind velocity

fields estimated by applying the cross-correlation algorithm to the images in

Figure 30. Here, the wind velocity vectors are generally directed from the southeast

to the northwest. However, there is a strip of low velocity vectors near the right

edge of the lidar scan. The effects are not noticeable near the left edge of the lidar

scan where wind likely flows parallel to the edge line. To determine the cause of

this apparent error synthetic backscatter images are cut in a way to mimic the edge

of the sector scan.

The effects of an edge of a backscatter scan are tested in a way very

similar to the one described in previous sections. However, instead of placing

multiple Gaussian features randomly only one Gaussian feature is placed in the

middle of the image. The intensity of the Gaussian feature is much greater than

that of surrounding background features (about 10 times brighter). Next, turbulent

diffusion is applied by using turbulent perturbation fields generated by the model

of Mann (1994) and Mann (1998). Now, it is important to see what happens when

the Gaussian feature is cut by an edge line. Thus, an edge line is calculated in such

a way that the edge line cuts the Gaussian feature. Here, a diagonal edge line

(y = x) is used and half of the interrogation window, southeast side of the edge

line, is filled in with zeros. Then, as in previous sections, one places this image

(100× 100 pixels) at the lower left corner of the interrogation window (200× 200
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pixels), and sets zeros for all other regions. Figure 33a show the synthetic

backscatter image at time t1 (block 1) for testing the edge effect. Next, one applies

a uniform velocity field to block 1 and obtains the synthetic backscatter image at

time t2 (block 2). As in the previous sections, one places 100× 100 pixels of

synthetic backscatter image and sets all zeros for the rest of region. However, the

synthetic backscatter image is placed in the upper right of the interrogation

window, instead of the lower left. Figures 33b and 33c show block 2 and the

velocity field, respectively. Finally, the cross-correlation algorithm with multi-pass

approah and polynomial fitting is applied, as described in the previous sections.

The test is repeated by using N = 100 pairs of synthetic backscatter images. One

can place the same Gaussian feature in the middle of each synthetic backscatter

image, but the distribution of surrounding features is varied.



75

(a) Lidar backscatter image at t1.

(b) Lidar backscatter image at t2.

Figure 30. REAL lidar scans on June 24, 2013
at California State University Chico, University
Farm.
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(a) Lidar backscatter image at t1.

(b) Lidar backscatter image at t2.

Figure 31. Zoomed REAL lidar scans on June 24,
2013 at California State University Chico, Uni-
versity Farm.
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Figure 32. An example of the edge effect in a
REAL lidar wind field. Wind velocity vectors
were estimated by applying the cross-correlation
algorithm on lidar backscatter images shown in
Figures 30 and 31.
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(a) Block 1 cut by an edge.
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(b) Block 2 cut by an edge.
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(c) Velocity field for testing edge effect.

Figure 33. Panel a shows block 1 with a Gaussian feature cut by
an edge line. Panel b shows block 2 cut by an edge line. Block 2 is
created by the velocity field, as shown in panel c, applied to block
1. Panel c is the uniform non-turbulent velocity field for testing the
edge effect.



CHAPTER IV

RESULTS

The mean displacement vector, obtained from the cross-correlation

algorithm N = 100 pairs of synthetic backscatter images, is compared to the mean

velocity for the corresponding synthetic velocity field. In this section, results of the

following experiments are presented: (1) the performance of the cross-correlation

algorithm for various velocity fields that are the sum of some analytical functions

and turbulent perturbations, (2) the performance of the cross-correlation algorithm

for varying turbulent intensities, and (3) the performance of the cross-correlation

algorithm in the case that a predominant feature is cut by a edge line.

Different Types of Wind
Velocity Fields

Uniform Flow

The uniform flow field is the velocity field such that the velocity in every

pixel location in the interrogation window is constant. Let u(x, y) and v(x, y) be

the east-west and the north-south components of the wind velocity, respectively, in

the Cartesian coordinates (x, y). Then the uniform flow field can be expressed as

(u, v) = (C1, C2), (1)

where C1 and C2 are constants. One example of such velocity fields is shown in

Figure 34a. Here, the velocity field is given by the function (u, v) = (10, 0)

79
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(pixels/frames), which is uniform and directed toward the east (positive

x-direction). The colors and arrows in Figure 34a represent the magnitude and

direction of the velocity vectors at a given pixel location, respectively. Since every

pixel location in the interrogation window has the same velocity vector, the mean

and the standard deviation of the velocity vectors are (10.0, 0.00) (pixels/frames)

and (0.00, 0.00) (pixels/frames), respectively. This velocity field is applied to

N = 100 pairs of synthetic backscatter images. Figure 34b shows the result of the

cross-correlation algorithm for uniform flow (u, v) = (10.0, 0.00) (pixels/frames).

The cross-correlation functions (functions of lags) for N = 100 pairs of synthetic

backscatter images are accumulated, and the mean value for each location is

computed. The colors of the plot represent the mean cross-correlation values. The

red and dark blue colors represent high and low mean cross-correlation values,

respectively. From Figure 34b one can see that the peak of the cross-correlation

function has coordinates (xlag, ylag) = (10.0, 0.00) (pixels), and represents the

displacement in the time interval ∆t = t2 − t1. For N = 100 pairs of synthetic

backscatter images, the mean and the standard deviation of the resultant

displacement vector, calculated by the cross-correlation algorithm with multi-pass

approach, are (9.98, 5.38× 10−5) (pixels) and (3.55× 10−3, 4.44× 10−4) (pixels),

respectively. The x-component of the mean displacement vector is 0.20% lower

than that of the given velocity field. The resultant displacement vector is almost

identical to that expected in the given velocity field. However, it is slightly smaller

than the actual value, due to the fact that the cross-correlation function is always

skewed (weighted toward the lower side) and the polynomial fit cannot give the

exact peak location of the cross-correlation function.
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(a) Velocity field.
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(b) Resultant displacement vector.

Figure 34. Panel a represents an example of a non-turbulent uni-
form velocity field, (u, v) = (10, 0) (pixels/frames), applied to block
1. The mean velocity and standard deviation are (10.0, 0.00) (pix-
els/frames) and (0.00, 0.00) (pixels/frames), respectively. Panel
b is the mean cross-correlation function and resultant displace-
ment vector for N = 100 pairs of synthetic backscatter images.
The mean and standard deviation of the displacement vector are
(9.98, 5.38 × 10−5) (pixels) and (3.55 × 10−3, 4.44 × 10−4) (pixels),
respectively.
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Uniform Flow with Turbulent
Perturbations

Turbulent perturbations of wind velocity fields are common near the

surface of the Earth. One simplest example of such field can be created by the sum

of a uniform flow and a turbulent perturbation field, as generated by the model of

Mann (1994) and Mann (1998). This type of flow is what may occur in flow over

the ocean without large coherent structures. Let (u′, v′) represent the turbulent

perturbation field. Then the velocity field, (u, v), can be expressed as

(u, v) = (C1 + u′, C2 + v′), (2)

where, C1 and C2 are constants. One example of such a velocity field is,

(u, v) = (10 + u′, v′) (pixels/frames), as shown in Figure 35a. Panel a shows that

the velocity field is not constant because of the turbulent perturbations, but most

of the velocity vectors are directed to the right (positive x direction). The mean

and the standard deviation of the velocity vectors are (11.1, 0.104) (pixels/frames)

and (1.97, 1.23) (pixels/frames), respectively. This velocity field is applied to

N = 100 pairs of synthetic backscatter images. Panel b shows the result of the

cross-correlation algorithm for the uniform flow with turbulent fluctuations. The

mean and the standard deviation of the resultant displacement vectors, due to

different synthetic backscatter images, are (10.8, 0.0702) (pixels) and (0.778, 0.289)

(pixels), respectively. The x-component of the mean displacement vector is 2.70%

lower than that of the given velocity field. The resultant displacement vectors are

slightly lower than the displacement vector predicted by the given velocity field.
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(a) Velocity field.
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(b) Resultant displacement vector.

Figure 35. Panel a represents an example of a uniform velocity field
with turbulent perturbations, (u, v) = (10 + u′, v′) (pixels/frames),
applied to block 1. The mean velocity and standard deviation
are (11.1, 0.104) (pixels/frames) and (1.97, 1.23) (pixels/frames), re-
spectively. Panel b is the mean cross-correlation function and resul-
tant displacement vector for N = 100 pairs of synthetic backscat-
ter images. The mean and standard deviation of the displacement
vector are (10.8, 0.0702) (pixels) and (0.778, 0.289) (pixels), respec-
tively.
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Converging Flow

Convergent flow on the scale of a typical interrogation window (100 m -

1000 m) occurs routinely in unstable daytime convective boundary layers. Areas of

strong horizontal convergence and divergence are associated with cellular

convection circulations in the lower boundary layer (Schmidt and Schumann, 1989).

The convergent flow field (u, v) has a negative divergence, so that

∂u

∂x
+
∂v

∂y
< 0. (3)

The notion of convergence requires 2 components u and v. One example of velocity

fields that satisfies the equation above is (u, v) = (10,−0.2y + 10) (pixels/frames),

applied to the xy-plane (0 ≤ x ≤ 100, 0 ≤ y ≤ 100), as shown in Figure 36a. Here,

the flow field is constant in the u-component, but there is a convergence in the

v-component. The mean and the standard deviation of the velocity vectors are

(10.0, 0.00) (pixels/frames) and (0.00, 5.83) (pixels/frames), respectively. This

velocity field is applied to N = 100 pairs of synthetic backscatter images.

Figure 36b shows the result of the cross-correlation algorithm for the convergent

flow. The mean and the standard deviation of the resultant displacement vectors,

due to different synthetic backscatter images, are (9.84,−0.533) (pixels) and

(0.896, 3.85) (pixels), respectively. The x-component of the mean displacement

vector is 1.60% lower than that of the given velocity field. The resultant

displacement vectors are slightly lower than the displacement vector predicted by

the given velocity field, and the standard deviation in the y-direction is higher than

in the previous cases because of non-uniformity of the velocity field in the

y-direction.
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(a) Velocity field.
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(b) Resultant displacement vector.

Figure 36. Panel a represents an example of a non-turbulent con-
vergent velocity field, (u, v) = (10,−0.2y + 10) (pixels/frames), ap-
plied to block 1. The mean velocity and standard deviation are
(10.0, 0.00) (pixels/frames) and (0.00, 5.83) (pixels/frames), respec-
tively. Panel b is the mean cross-correlation function and resultant
displacement vector for N = 100 pairs of synthetic backscatter im-
ages. The mean and standard deviation of the displacement vector
are (9.84,−0.533) (pixels) and (0.896, 3.85) (pixels), respectively.
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Converging Flow with Turbulent
Perturbations

The turbulent perturbation field, as generated by the model of Mann

(1994) and Mann (1998), is added to the convergent flow field to examine

non-uniform converging velocity fields. One example of a velocity field is

(u, v) = (10 + u′,−0.2y + 10 + v′) (pixels/frames), where u′ and v′ are the u- and v-

components of the turbulent perturbations, respectively. Figure 37a shows the

convergent flow with turbulent perturbations (u, v) = (10 + u′,−0.2y + 10 + v′)

(pixels/frames), applied to the xy-plane (0 ≤ x ≤ 100, 0 ≤ y ≤ 100). The mean and

the standard deviation of the velocity vectors are (11.1, 0.103) (pixels/frames) and

(1.97, 5.73) (pixels/frames), respectively. This velocity field is applied to N = 100

pairs of synthetic backscatter images. Figure 37b shows the result of the

cross-correlation algorithm for the convergent flow with turbulent perturbations.

The mean and the standard deviation of the resultant displacement vectors, due to

different synthetic backscatter images, are (10.7,−0.395) (pixels) and (1.55, 3.54)

(pixels), respectively. The x-component of the mean displacement vector is 3.60%

lower than that of the given velocity field. The resultant displacement vectors are

slightly lower than the displacement vector predicted by the given velocity field,

and there are standard deviations in both x- and y-directions due to non-uniformity

of the velocity field in the interrogation window.
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(b) Resultant displacement vector.

Figure 37. Panel a represents an example of a convergent velocity
field with turbulent perturbations, (10 + u′,−0.2y + 10 + v′) (pix-
els/frames), applied to block 1. The mean velocity and standard
deviation are (11.1, 0.103) (pixels/frames) and (1.97, 5.73) (pix-
els/frames), respectively. Panel b is the mean cross-correlation
function and resultant displacement vector for N = 100 pairs of
synthetic backscatter images. The mean and standard deviation of
the displacement vector are (10.7,−0.395) (pixels) and (1.55, 3.54)
(pixels), respectively.
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Diverging Flow

Divergent flow on the scale of a typical interrogation window (100 m -

1000 m) occurs routinely in unstable daytime convective boundary layers. Areas of

strong horizontal convergence and divergence are associated with cellular

convection circulations in the lower boundary layer (Schmidt and Schumann, 1989).

The divergent flow field (u, v) has a positive divergence, so that

∂u

∂x
+
∂v

∂y
> 0. (4)

The notion of divergence requires 2 components u and v. One example of velocity

fields that satisfies the equation above is (u, v) = (10, 0.2y − 10) (pixels/frames),

applied to the xy-plane (0 ≤ x ≤ 100, 0 ≤ y ≤ 100), as shown in Figure 38a. As in

the convergent flow described above, the flow field is constant in the u-component,

but there is a divergence in the v-component. The mean and the standard

deviation of the velocity vectors are (10.0, 0.00) (pixels/frames) and (0.00, 5.83)

(pixels/frames), respectively. This velocity field is applied to N = 100 pairs of

synthetic backscatter images. Figure 38b shows the result of the cross-correlation

algorithm for the convergent flow. The mean and the standard deviation of the

resultant displacement vectors, due to different synthetic backscatter images, are

(9.89, 0.503) (pixels) and (0.484, 5.35) (pixels), respectively. The x-component of

the mean displacement vector is 1.10% lower than that of the given velocity field.

The resultant displacement vectors are slightly lower than the displacement vector

predicted by the given velocity field, as in the case of the convergent flow.
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(b) Resultant displacement vector.

Figure 38. Panel a represents an example of a non-turbulent diver-
gent velocity field, (u, v) = (10, 0.2y−10) (pixels/frames), applied to
block 1. The mean velocity and standard deviation are (10.0, 0.00)
(pixels/frames) and (0.00, 5.83) (pixels/frames), respectively. Panel
b is the mean cross-correlation function and resultant displacement
vector for N = 100 pairs of synthetic backscatter images. The mean
and standard deviation of the displacement vector are (9.89, 0.533)
(pixels) and (0.484, 5.35) (pixels), respectively.
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Diverging Flow with Turbulent
Perturbations

The turbulent perturbation field, as generated by the model of Mann

(1994) and Mann (1998), is added to the divergent flow field to examine

non-uniform divergent velocity fields. One example of such velocity field is

(u, v) = (10 + u′, 0.2y − 10 + v′) (pixels/frames), where u′ and v′ are the u- and v-

components of the turbulent perturbations, respectively. Figure 39a shows the

divergent flow with turbulent perturbations (u, v) = (10 + u′, 0.2y − 10 + v′)

(pixels/frames), applied to the xy-plane (0 ≤ x ≤ 100, 0 ≤ y ≤ 100). The mean and

the standard deviation of the velocity vectors are (11.1, 0.103) (pixels/frames) and

(1.97, 6.18) (pixels/frames), respectively. This velocity field is applied to N = 100

pairs of synthetic backscatter images. Figure 39b shows the result of the

cross-correlation algorithm for the divergent flow with turbulent perturbations.

The mean and the standard deviation of the resultant displacement vectors, due to

different synthetic backscatter images, are (10.6, 0.553) (pixels) and (1.72, 5.35)

(pixels), respectively. The x-component of the mean displacement vector is 4.50%

lower than that of the given velocity field. As in the convergent flow with turbulent

perturbations case, the resultant displacement vectors are slightly lower than the

displacement vector predicted by the given velocity field, and there are standard

deviations in both x- and y-directions due to non-uniformity of the velocity field in

the interrogation window. From these results, one can say that the resultant

displacement vectors are similar for divergent and convergent flow fields.
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(b) Resultant displacement vector.

Figure 39. Panel a represents an example of a divergent velocity field
with turbulent perturbations, (10+u′, 0.2y−10+v′) (pixels/frames),
applied to block 1. The mean velocity and standard deviation
are (11.1, 0.103) (pixels/frames) and (1.97, 6.18) (pixels/frames), re-
spectively. Panel b is the mean cross-correlation function and resul-
tant displacement vector for N = 100 pairs of synthetic backscatter
images. The mean and standard deviation of the displacement vec-
tor are (10.6, 0.553) (pixels) and (1.72, 5.35) (pixels), respectively.
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Rotational Flow

Rotational flow on the scale of a typical interrogation window (100 m -

1000 m) occurs routinely in unstable daytime convective boundary layers. The

rotation is often observed to occur at the intersection of convergence boundaries

(Kanak, 2005). The circular flow (u, v) in the xy-plane, needs to satisfy the

following condition.

∂v

∂x
− ∂u

∂y
6= 0. (5)

If the velocity field is in the counterclockwise direction (viewed from the top of the

xy-plane), the velocity field (u, v) satisfies the condition

∂v

∂x
− ∂u

∂y
> 0 (6)

or, if the velocity field is in the clockwise direction, the velocity field (u, v) satisfies

the condition

∂v

∂x
− ∂u

∂y
< 0. (7)

One example of rotational flow in the counterclockwise direction is

(u, v) = (−0.2y + 10, 0.2x− 10) (pixels/frames), applied to the xy-plane

(0 ≤ x ≤ 100, 0 ≤ y ≤ 100), as shown in Figure 40a. From Figure 40a, one can see

that the flow field has a rotation and the u- and v-components of the fields have

both positive and negative values in the interrogation window, and are canceled

out. The mean and the standard deviation of the velocity vectors are

(5.98× 10−5, 0.00) (pixels/frames) and (5.83, 5.83) (pixels/frames), respectively.

This velocity field is applied to N = 100 pairs of synthetic backscatter images.

Figure 40b shows the result of the cross-correlation algorithm for the rotational

flow. The mean and the standard deviation of the resultant displacement vectors,
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due to different synthetic backscatter images, are (−0.891,−0.332) (pixels) and

(4.19, 4.74) (pixels), respectively. The difference between x- and y- components of

the mean displacement vector and that of actual flow field is within ±1 pixel. The

resultant displacement vectors depend on the distribution of features in the image,

so the standard deviations are high in x- and y-components. However, the mean

cross-correlation function averages and cancels fluctuations of the resultant

displacement vectors, and gives a low mean displacement vector that is somewhat

similar to the one predicted from the given rotational flow field.
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(b) Resultant displacement vector.

Figure 40. Panel a represents an example of a non-turbulent rota-
tional velocity field, (u, v) = (−0.2y+10, 0.2x−10) (pixels/frames),
applied to block 1. The mean velocity and standard deviation are
(5.98× 10−5, 0.00) (pixels/frames) and (5.83, 5.83) (pixels/frames),
respectively. Panel b is the mean cross-correlation function and re-
sultant displacement vector for N = 100 pairs of synthetic backscat-
ter images. The mean and standard deviation of the displacement
vector are (−0.891,−0.332) (pixels) and (4.19, 4.74) (pixels), respec-
tively.
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Rotational Flow with Turbulent
Perturbations

The turbulent perturbation field, as generated by the model of Mann

(1994) and Mann (1998), is added to the rotational flow field to examine

non-unifrom rotational velocity fields. One example of such velocity field is

(u, v) = (−0.2y + 10 + u′, 0.2x− 10 + v′) (pixels/frames), where u′ and v′ are the u-

and v- components of the turbulent perturbations, respectively. Figure 41a shows

the rotational flow with turbulent perturbations

(u, v) = (−0.2y + 10 + u′, 0.2x− 10 + v′) (pixels/frames), applied to the xy-plane

(0 ≤ x ≤ 100, 0 ≤ y ≤ 100). The mean and the standard deviation of the velocity

vectors are (1.08, 0.104) (pixels/frames) and (5.46, 5.92) (pixels/frames),

respectively. This velocity field is applied to N = 100 pairs of synthetic backscatter

images. Figure 41b shows the result of the cross-correlation algorithm for the

rotational flow with turbulent perturbations. The mean and the standard deviation

of the resultant displacement vectors, due to different synthetic backscatter images,

are (0.345,−0.118) (pixels) and (3.38, 4.34) (pixels), respectively. As the case of

rotational flow with no turbulent perturbations, the difference between x- and y-

components of the mean displacement vector and that of the actual flow field is

within ±1 pixel. The results are similar to those of the rotational flow with no

turbulent perturbations.
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(b) Resultant displacement vector.

Figure 41. Panel a represents an example of a rotational velocity
field with turbulent perturbations, (u, v) = (−0.2y+ 10 + u′, 0.2x−
10 + v′) (pixels/frames), applied to block 1. The mean velocity and
standard deviation are (1.08, 0.104) (pixels/frames) and (5.46, 5.92)
(pixels/frames), respectively. Panel b is the mean cross-correlation
function and resultant displacement vector for N = 100 pairs of
synthetic backscatter images. The mean and standard deviation of
the displacement vector are (0.345,−0.118) (pixels) and (3.38, 4.34)
(pixels), respectively.



96

Shear Flow

Concentrated regions of horizontal wind shear may occur in the lower

atmosphere and are associated with a variety of mesoscale flows. Some examples of

such shear flows are density current fronts (Mayor, 2011) and flow over complex

terrain. The shear flow is considered as the extreme case of the non-uniform flow

where two sections within the interrogation window have opposing velocities. One

example of such velocity field is created by a constant negative velocity

(u, v) = (−5, 0) (pixels/frames) in the upper part and a constant positive velocity

(u, v) = (25, 0) (pixels/frames) in the lower part, joined by a shear profile, as shown

in Figure 42a. Since the lower part of the velocity is greater than that of the upper

part, the mean velocity in the interrogation window is in the positive u-direction.

The mean and the standard deviation of the velocity vectors are (10.2, 0.00)

(pixels/frames) and (14.3, 0.00) (pixels/frames), respectively. This velocity field is

applied to N = 100 pairs of synthetic backscatter images. Figure 42b shows the

result of the cross-correlation algorithm for the shear flow with turbulent

perturbations. The mean and the standard deviation of the resultant displacement

vectors, due to different synthetic backscatter images, are (4.08,−0.0860) (pixels)

and (15.3, 0.775) (pixels), respectively. The difference between the x-component of

the mean displacement vector and that of actual flow field is about 6 pixels, and it

clearly underestimates the given flow field. From Figure 42b we see that the mean

cross-correlation function has two distinct peaks (xlag, ylag) = (25, 0) (pixels) and

(xlag, ylag) = (−5, 0) (pixels), because of the distribution of features. If the

predominant features are in the upper part of the image, the cross-correlation

algorithm gives the displacement vector (x, y) = (−5, 0) (pixels). On the other

hand, if predominant features are in the lower part of the image, the
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cross-correlation algorithm gives the displacement vector (x, y) = (25, 0) (pixels).

These displacement vectors are averaged, but the cross-correlation algorithm tends

to pick more lower displacement vectors, so the resultant displacement vectors are

much lower than the one predicted from the given velocity field.

(a) Velocity field. (b) Resultant displacement vector.

Figure 42. Panel a represents an example of non-turbulent ve-
locity field with strong shear applied to block 1. The velocity
field is created by a constant negative velocity (u, v) = (−5, 0)
(pixels/frames) in the upper part and a constant positive veloc-
ity (u, v) = (25, 0) (pixels/frames) in the lower part, jointed by
a shear profile. The mean velocity and standard deviation are
(10.2, 0.00) (pixels/frames) and (14.3, 0.00) (pixels/frames), respec-
tively. Panel b is the mean cross-correlation function and resultant
displacement vector for N = 100 pairs of synthetic backscatter im-
ages. The mean and standard deviation of the displacement vector
are (4.08,−0.0860) (pixels) and (15.3, 0.775) (pixels), respectively.
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Shear Flow with Turbulent
Perturbations

Finally, the turbulent perturbation field, as generated by the model of

Mann (1994) and Mann (1998), is added to the shear flow field. One example of

such velocity field is the turbulent perturbation field (u′v′) added to the shear field

in Figure 42a. Figure 43a shows the shear flow with turbulent perturbations

applied to the xy-plane (0 ≤ x ≤ 100, 0 ≤ y ≤ 100). The mean and the standard

deviation of the velocity vectors are (11.2, 0.104) (pixels/frames) and (13.9, 1.23)

(pixels/frames), respectively. This velocity field is applied to N = 100 pairs of

synthetic backscatter images. Figure 43b shows the result of the cross-correlation

algorithm for the shear flow with turbulent perturbations. The mean and the

standard deviation of the resultant displacement vectors, due to different synthetic

backscatter images, are (4.95,−0.115) (pixels) and (14.2, 0.978) (pixels),

respectively. The difference between the x-component of the mean displacement

vector and that of actual flow field is about 6 pixels, and it clearly underestimates

the given flow field. The results are similar to that of the shear flow with no

turbulent perturbations.



99

(a) Velocity field. (b) Resultant displacement vector.

Figure 43. Panel a represents an example of a shear velocity
field with turbulent perturbations applied to block 1. The veloc-
ity field is created by the sum of shear velocity field, as shown in
Figure 42a, and turbulent perturbations. The mean velocity and
standard deviation are (11.2, 0.104) (pixels/frames) and (13.9, 1.23)
(pixels/frames), respectively. Panel b is the mean cross-correlation
function and resultant displacement vector for N = 100 pairs of
synthetic backscatter images. The mean and standard deviation of
the displacement vector are (4.95,−0.115) (pixels) and (14.2, 0.978)
(pixels), respectively.
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Effects of Turbulent Intensities

The relationship between non-uniformity of velocity fields and the

performance of the cross-correlation algorithm can be examined by using the

velocity field

(u, v) = (C1 + u′(x, y), C2 + v′(x, y)), (8)

where u′(x, y) and v′(x, y) are turbulent perturbations and C1 and C2 are

constants. u′(x, y) and v′(x, y) are increased by increasing the aerodynamic

roughness length z0 for a series of flow fields. One example of such velocity field is

(u, v) = (10 + u′(x, y), v′(x, y)) (9)

with different values of z0, as shown in Figure 44 and Table 2. Figure 44 and

Table 2 show that the velocity field is approximately uniform in the interrogation

window for z0 = 0.001 m, while turbulent perturbations are noticeable for large

values of z0.

Figure 45 shows mean cross-correlation functions for the velocity field

(u, v) = (10 + u′(x, y), v′(x, y)) (pixels/frames) with different values of the

aerodynamic roughness length z0. From Figure 45, one can see that the mean

cross-correlation function is broadened as the aerodynamic roughness length

increases. Table 3 shows the mean and standard deviation of resultant

displacement vectors for N = 100 pairs of synthetic backscatter images. A

comparison of Table 2 and Table 3 shows that the cross-correlation algorithm tends

to underestimate the velocity and underestimation is more noticeable when the

aerodynamic roughness length z0 is increased.
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Let Dtrue represent the magnitude of the mean displacement vector obtained from

wind velocity field, and Dccf represent the magnitude of the displacement vector

from the cross-correlation function Dccf using N = 100 pairs of synthetic

Table 2
Velocity fields with different aerodynamic roughness

lengths z0

z0 (m) Mean Velocity (u, v) Standard Deviation
0.0001 ( 10.57, 0.047 ) ( 0.647, 0.376 )
0.0005 ( 10.64, 0.053 ) ( 0.732, 0.425 )
0.001 ( 10.68, 0.056 ) ( 0.776, 0.451 )
0.005 ( 10.79, 0.065 ) ( 0.902, 0.524 )
0.01 ( 10.85, 0.070 ) ( 0.970, 0.564 )
0.05 ( 11.03, 0.085 ) ( 1.18, 0.683 )
0.1 ( 11.13, 0.094 ) ( 1.29, 0.752 )
0.5 ( 11.48, 0.123 ) ( 1.69, 0.980 )
1.0 ( 11.70, 0.141 ) ( 1.94, 1.13 )

Velocity fields (u, v) = (10 + u′, v′) (pixels/frames) with
different aerodynamic roughness length z0. The mean and
standard deviation are measured in (pixels/ frames). Tur-
bulent fluctuation is increased as increasing z0.

Table 3
Resultant displacement vectors for N = 100 pairs of

synthetic backscatter images

z0 (m) Mean Displacement (x, y) Standard Deviation
0.0001 ( 10.33, 0.0252 ) ( 0.432, 0.155 )
0.0005 ( 10.39, 0.0282 ) ( 0.446, 0.159 )
0.001 ( 10.42, 0.0277 ) ( 0.449, 0.163 )
0.005 ( 10.51, 0.0311 ) ( 0.448, 0.158 )
0.01 ( 10.54, 0.0371 ) ( 0.461, 0.170 )
0.05 ( 10.67, 0.0519 ) ( 0.501, 0.191 )
0.1 ( 10.73, 0.0717 ) ( 0.527, 0.191 )
0.5 ( 10.90, 0.117 ) ( 0.740, 0.254 )
1.0 ( 10.93, 0.137 ) ( 0.856, 0.314 )

Resultant displacement vectors for N = 100 pairs of syn-
thetic backscatter images. The mean and standard devia-
tion are measured in (pixels/ frames).
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backscatter images. Then the relative error and the absolute error can be expressed

as | Dccf−Dtrue
Dtrue

| and | Dccf −Dtrue |, respectively. Figure 46 shows the relative error

| Dccf−Dtrue
Dtrue

| versus the aerodynamic roughness length z0 and the absolute error

| Dccf −Dtrue | versus the aerodynamic roughness length z0. From Figure 46, one

can see that both the relative error and the absolute error increase as the

aerodynamic roughness length increases.

For a given turbulent perturbation field (u′(x, y), v′(x, y)), the turbulence

kinetic energy (TKE) is defined as

TKE =
1

2

[
u′2 + v′2

]
. (10)

Figure 47 shows the relative error | Dccf−Dtrue
Dtrue

| versus TKE and the absolute error

| Dccf −Dtrue | versus TKE. From Figure 47, one can see that both the relative

error and the absolute error increase as TKE increases.
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(a) z0 = 0.0001 m.
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(b) z0 = 0.0005 m.
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(c) z0 = 0.001 m.
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(d) z0 = 0.005 m.
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(e) z0 = 0.01 m.
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(f) z0 = 0.05 m.
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(g) z0 = 0.1 m.
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(h) z0 = 0.5 m.
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(i) z0 = 1.0 m.

Figure 44. Velocity fields (u, v) = (10 + u′(x, y), v′(x, y)) (pix-
els/frames) generated by uniform flow and various turbulent inten-
sities. Turbulent intensities are increased by increasing the aerody-
namic roughness length z0. z0 changes from 0.0001 m to 1.0 m.
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(a) z0 = 0.0001 m.
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(b) z0 = 0.0005 m.
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(c) z0 = 0.001 m.
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(d) z0 = 0.005 m.
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(e) z0 = 0.01 m.
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(f) z0 = 0.05 m.
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(g) z0 = 0.1 m.
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(h) z0 = 0.5 m.
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(i) z0 = 1.0 m.

Figure 45. Mean cross-correlation functions for the velocity field
(u, v) = (10 + u′(x, y), v′(x, y)) (pixels/frames) with different values
of the aerodynamic roughness length z0. z0 changes from 0.0001 m
to 1.0 m.
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Figure 46. The relative error | Dccf−Dtrue
Dtrue

| vs the aerodynamic
roughness length z0, and the absolute error | Dccf − Dtrue | vs the
aerodynamic roughness length z0.
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Figure 47. The relative error | Dccf−Dtrue
Dtrue

| versus the turbulence
kinetic energy (TKE), and the absolute error | Dccf −Dtrue | versus
the turbulence kinetic energy (TKE).
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Effects of an Edge of
a Scan Sector

The effects of a scan edge cutting a predominant aerosol feature was

investigated by placing a Gaussian feature in the middle of a synthetic backscatter

image and then cutting the feature by a diagonal edge line y = x. A uniform

velocity field (u, v) = (10, 0) (pixels/ frames) is applied for N = 100 pairs of

synthetic backscatter images with a Gaussian feature cut by the edge line.

Figure 48a represents the magnitude and direction of the velocity vectors at a given

pixel location. Since every pixel location in the interrogation window has the same

velocity vector, the mean and the standard deviation of the velocity vectors are

(10.0, 0.00) (pixels/frames) and (0.00, 0.00) (pixels/frames), respectively. Figure 48b

shows the result of the cross-correlation algorithm forN = 100 pairs of synthetic

backscatter images. The mean and standard deviation of the displacement vector

are (5.40, 4.46) (pixels) and (2.48, 2.43) (pixels), respectively. From the result, two

important facts were observed. First, the resultant displacement vector is much

lower than that predicted from a given velocity field. From the given velocity field,

it was expected that the magnitude of the displacement would be Dtrue = 10.0

pixels. However, the magnitude of the resultant displacement vector was

Dccf = 7.00 pixels which is 30% lower than Dtrue. In addition, the direction of the

resultant displacement vector was different from that expected from the given

velocity field. The given velocity field was in the x-direction. However, the

resultant displacement vector was the angle 39.6 ◦ from the x-axis. This direction

was close to the direction of the edge line (diagonal). The result is consistent with

the observation (REAL lidar scan on June 24, 2013, California State University,

Chico University Farm) as shown in Figure 32. Thus, the resultant displacement

vector was inconsistent with the displacement expected from the given flow field.
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(a) Velocity field.
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(b) Resultant displacement vector.

Figure 48. Panel a represents a non-turbulent uniform velocity
field, (u, v) = (10, 0), applied to block 1. The mean velocity and
standard deviation are (10.0, 0.00) (pixels/frames) and (0.00, 0.00)
(pixels/frames), respectively. Panel b is the mean cross-correlation
function and resultant displacement vector for N = 100 pairs of
synthetic backscatter images. The mean and standard deviation
of the displacement vector are (5.40, 4.46) (pixels) and (2.48, 2.43)
(pixels), respectively.



CHAPTER V

DISCUSSION AND CONCLUSIONS

In this chapter, results from all tests of the cross-correlation algorithm

using synthetic backscatter images and velocity fields are discussed. First, a

synthetic backscatter image is compared with an actual lidar backscatter image.

Next, validation of using the fast Fourier transform method is discussed. Then, the

effect of zero-padding is examined by comparing the results using zero-padded

images and non-zero-padded images. Next, the performance of the cross-correlation

algorithm, associated with non-uniformity of the velocity field, is discussed by a

series of examples, using two square pulses moving in the opposite directions. In

addition, the edge effect is discussed by using a moving Gaussian feature cut by a

diagonal edge line. Next, the performance of the cross-correlation algorithm,

including under estimation of the velocity for non-uniform velocity fields, is

summarized and discussed. Finally, conclusions are stated at the end of this

chapter.

Synthetic Backscatter Images and
Actual Lidar Data

Synthetic backscatter images are artificially created, and hence are not

the same as the ones that are obtained from actual scans of the atmosphere.

However, it is important to make synthetic backscatter images that are similar to

the actual backscatter images. Figure 49a is an example of a backscatter image

from a REAL lidar system (PPI scan). From Figure 49a, one can see that there are

109
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several features in the region of approximately 1.0− 3.0 km from the lidar system.

Typical features in such an image are more than ten times brighter than that of the

background. Figure 49b is an example of synthetic backscatter image used to test

the cross-correlation algorithm. As discussed in previous sections, Gaussian

features are placed randomly and diffused by turbulent perturbation field generated

by the model described by Mann (1994) and Mann (1998). Comparing Figures 49a

and 49b, one can see similarities and differences between them. The shape of actual

aerosol features is strongly influenced by turbulent diffusion near the surface of the

Earth, and synthetic backscatter images mimic the shape of such features. On the

other hand, the actual aerosol backscatter images may contain coherent structures.

For example, from Figure 49a, one can see an elongated aerosol feature across the

scanned region. On the other hand, to make synthetic backscatter images Gaussian

features are placed randomly in the interrogation window. In this case, a synthetic

backscatter image does not contain any coherent structure. Thus, synthetic

backscatter images may not represent the actual lidar backscatter image although

both reflect turbulent diffusion of the atmosphere.
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(a) An example of a REAL lidar backscatter image (PPI scan).
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(b) An example of synthetic backscatter
image.

Figure 49. Comparison of REAL lidar backscatter image and syn-
thetic backscatter image



112

Comparison of Covariance Method
and FFT Method

The normalized cross-correlation function rx for two waveforms f1 and f2

is defined as

rx =
COV1,2
S1S2

, (1)

where COV1,2 is the covariance of the overlapped portions of f1 and f2, S1 is the

standard deviation of f1, and S2 is the standard deviation of f2. One can use this

function to estimate the wind velocity fields, but it is not very efficient. Instead,

one can calculate the cross-correlation function rx using the fast Fourier transform

(FFT) method.

rx =
FFT−1(FFT1FFT

∗
2 )

S1S2

, (2)

where FFT1 =
∑N
i=1 f1e

−i2πkx
N

N
is the fast Fourier transform of f1,

FFT2 =
∑N
i=1 f2e

−i2πkx
N

N
is the complex conjugate of the fast Fourier transform of f2,

S1 is the standard deviation of f1, S2 is the standard deviation of f2, and FFT−1

represents the inverse fast Fourier transform. This method (FFT method) is much

more computationally efficient compared to the previous one (covariance method),

so the FFT method was used to test the performance of the cross-correlation

algorithm. To verify that the FFT method produces the same result as the

covariance method, one applies a velocity field of strong turbulent perturbations to

N = 100 synthetic backscatter images, and calculates the mean cross-correlation

function using the two methods. The velocity field was created by the sum of

uniform flow and strong turbulent perturbations using the aerodynamic roughness

length z0 = 1.5 m near the surface (altitude = 20 m). Figure 50c shows the velocity

field applied to N = 100 synthetic backscatter images. The mean velocity and

standard deviation are (10.7, 0.26) (pixels/frames) and (3.00, 1.84) (pixels/frames),
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respectively. The mean cross-correlation functions are shown in Figures 50a

and 50b. Both methods gave the same mean displacement vector and standard

deviation associated with different synthetic backscatter images. The mean and the

standard deviation of the resultant displacement vectors, due to different synthetic

backscatter images, are (9.31, 0.105) (pixels) and (1.53, 0.259) (pixels), respectively.

However their peak values are 0.702 and 0.747, respectively, because of different

normalization conditions. The results show that both methods give the same

displacement vector, so it is reasonable to use the FFT method to calculate the

cross-correlation function for computational efficiency.
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(a) Covariance method.
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(b) Fast Fourier transform method.
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(c) Velocity field.

Figure 50. The mean cross-correlation function for N = 100 pairs of
synthetic backscatter images is calculated by two different methods,
the covariance method (panel a) and the fast Fourier transform
method (panel b). Both panels a and b produces the same resultant
displacement vector. However their peak values are 0.702 and 0.747,
respectively, because of different normalization conditions. Panel c
is the velocity field, with strong turbulent perturbations, applied to
N = 100 pairs of synthetic backscatter images.
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Effects of Zero-Padding

In the previous section, it was shown that the FFT method and the

covariance method gave the same resultant displacement vector. Since, the FFT

method is computationally more efficient than the covariance method, it is

reasonable to apply the FFT method for real-time calculation of wind fields

(Mauzey et al., 2012). However, according to Adrian and Westerweel (2011), the

FFT method assumes periodic images, but synthetic images, like the actual

atmosphere, are not periodic. Therefore, it is important to solve this problem by

“zero-padding.” To confirm the intended result of zero-padding, one can perform

the test of the cross-correlation algorithm by using a velocity field of strong

turbulent perturbations. The velocity field was created by the sum of uniform flow

(u, v) = (10, 0) (pixels/frames) and turbulent perturbation field produced by the

model that is described by Mann (1994) and Mann (1998). Here, an aerodynamic

roughness length z0 = 2.0 m and flow field altitude of 50 m were chosen. The

velocity field was applied to N = 100 pairs of synthetic backscatter images and the

mean cross-correlation function and mean resultant displacement vector were

calculated. To test the effects of zero-padding, one can compare the results of using

zero-padded images and that of non zero-padded images, and all other factors

being the same. The results are shown in Figure 51. Panels a and b are the mean

cross-correlation functions with zero-padding and no zero-padding, respectively.

Figure 51c represents the velocity field applied to N = 100 pairs of synthetic

backscatter images. The mean and the standard deviation of the velocity field are

(11.8, 0.158) (pixels/frames) and (2.62, 1.62) (pixels/frames), respectively. The

mean resultant vector and the standard deviation of the displacement vector, for

zero-padded images, are (10.6, 0.0494) (pixels) and (1.86, 0.652) (pixels),
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respectively. The percent difference of the magnitude of the resultant displacement

vector and that predicted from the velocity field is 10.3%. On the other hand,

corresponding results for non zero-padded images are (10.2, 0.0817) (pixels) and

(2.30, 0.318) (pixels), respectively. The percent difference of the magnitude of the

resultant displacement vector and that predicted from the velocity field is 13.2%.

Comparing these results, one can see that the resultant displacement vector

calculated by using zero-padded images is better than that of non zero-padded

images. Thus, it is reasonable to use zero-padded images for applying the

cross-correlation algorithm to real lidar data.
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(a) Zero-padding.
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(b) Non zero-padding.
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(c) Velocity field.

Figure 51. The mean cross-correlation function for N = 100 pairs
of synthetic backscatter images is calculated by two different meth-
ods, zero-padding FFT method and non-zero-padding FFT method.
Panels a and b show the mean cross-correlation functions of zero-
padding and non-zero-padding methods, respectively. Although
they are similar, zero-padding method produces the displacement
vector closer to that predicted from the velocity field as shown in
panel c.
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Effects of Non-Uniformity

From analytical studies of a 2-D rectangular pulse moving at a constant

velocity, the cross-correlation function rxlag ,ylag calculated from the images f1(x, y)

and f2(x, y), can be expressed as

rxlag,ylag =



(
I20
S1S2

)
[a+ (xlag − 10)][b+ (ylag − 10)] : 10− a ≤ xlag ≤ 10 : 10− b ≤ ylag ≤ 10(

I20
S1S2

)
[a− (xlag − 10)][b− (ylag − 10)] : 10 ≤ xlag ≤ 10 + a : 10 ≤ ylag ≤ 10 + b(

I20
S1S2

)
[a+ (xlag − 10)][b− (ylag − 10)] : 10− a ≤ xlag ≤ 10 : 10 ≤ ylag ≤ 10 + b(

I20
S1S2

)
[a− (xlag − 10)][b+ (ylag − 10)] : 10 ≤ xlag ≤ 10 + a : 10− b ≤ ylag ≤ 10

where I0 is the peak backscatter intensity of the given Gaussian feature, a is the

width of the rectangular pulse, b is the height of the rectangular pulse, S1 is the

standard deviation of f1(x, y), and S2 is the standard deviation of f2(x, y). From

this equation, one can see that the peak value and profile of the cross-correlation

function depend on the peak intensity I0 and the area A = ab of the rectangular

pulse. That is, the cross-correlation function is likely biased if a bright (high

intensity) and large (large area) feature appears in both f1(x, y) and f2(x, y). In

addition, one may expect that the effect of the peak intensity is greater than that

of the area since the cross-correlation function is proportional to the peak intensity

squared. The bias of the cross-correlation algorithm is easy to observe by

generating two square pulses and applying different velocities. Here, some examples

of two square pulses (features 1 and 2) moving at different velocities in the time

interval ∆t = t2 − t1 are shown, which demonstrates that the resultant

displacement vectors are biased. Table 4 shows a series of examples of the

performance of the cross-correlation algorithm in the case of two square features

moving at different velocities. Feature 1 has the peak intensity I0 = 1.0, the area
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A = (10× 10) pixels, and moves 10 units in the positive x-direction in the time

interval ∆t = t2 − t1. On the other hand, feature 2 moves 10 units in the negative

x-direction and its peak intensity and area are varied.

Table 4
List of Non-Uniformity Tests of the

Cross-Correlation Algorithm

Test Feature 1, (u, v) = (10, 0) Feature 2, (u, v) = (−10, 0)
1 I0 = 1.0, A = (10× 10)pixels I0 = 1.0, A = (4× 4)pixels
2 I0 = 1.0, A = (10× 10)pixels I0 = 1.0, A = (20× 20)pixels
3 I0 = 1.0, A = (10× 10)pixels I0 = 0.5, A = (10× 10)pixels
4 I0 = 1.0, A = (10× 10)pixels I0 = 2.0, A = (10× 10)pixels
5 I0 = 1.0, A = (10× 10)pixels I0 = 0.5, A = (14× 14)pixels
6 I0 = 1.0, A = (10× 10)pixels I0 = 0.5, A = (20× 20)pixels
7 I0 = 1.0, A = (10× 10)pixels I0 = 0.5, A = (24× 24)pixels

Tests of non-uniformity in the case of two features (Features
1 and 2) moving at different velocities. Feature 1 and 2
move 10 units in the positive and the negative x-direction,
respectively, in the time interval ∆t = t2 − t1.

Effect of the Area of Features

Figure 52 shows the case that features 1 and 2 have the same peak

intensity but feature 2 is smaller than feature 1. Panels a and b represent the

images at t1 and t2, respectively. The cross-correlation result is shown in panel c.

Figure 52c reveals that there are four peaks and two of them represent the

displacements of features 1 and 2. Here, the cross-correlation algorithm selects the

displacement of feature 1 since the peak associated with the motion of feature 1 is

larger than that of feature 2. The result shows that the cross-correlation algorithm

selects the displacement of the feature with larger area.
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Figure 53 shows the case that features 1 and 2 have the same peak

intensity but feature 2 is larger than feature 1. Panels a and b represent the images

at t1 and t2, respectively. The cross-correlation result is shown as Figure 53c. From

Figure 53c one can see that there are four peaks (two of them are overlapped) and

two of them represent the displacements of features 1 and 2. Here, the

cross-correlation algorithm selects the displacement of feature 2 since the peak

associated with the motion of feature 2 is brighter than that of feature 1. As in the

previous result, the cross-correlation algorithm is biased and selects the

displacement of the feature with larger area.



121

−40 −20 0 20 40
x (Pixels)

−40

−20

0

20

40

y 
(P

ix
el

s)

0.0 0.2 0.4 0.6 0.8 1.0
Image intensity

(a) Image at time t1.
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(b) Image at time t2.
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(c) Cross-correlation function.

Figure 52. Panels a and b show that two square features 1 and 2
move 10 units in opposite directions in the time interval ∆t = t2−t1.
Feature 1 has the dimension 10× 10 pixels, the peak intensity I0 =
1.0, and moves 10 units in the positive x-direction. Feature 2 has
the dimension 4×4 pixels, the peak intensity I0 = 1.0, and moves 10
units in the negative positive x-direction. Panel c shows the cross-
correlation function and resultant displacement vector applied to
these images.
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(a) Image at time t1.
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(b) Image at time t2.

−40 −20 0 20 40
x Lag (Pixels)

−40

−20

0

20

40

y 
La

g 
(P

ix
el

s)

−0.0 0.2 0.4 0.6
Cross−Correlation  (N = 1)

(c) Cross-correlation function.

Figure 53. Panels a and b show that two square features 1 and 2
move 10 units in opposite directions in the time interval ∆t = t2−t1.
Feature 1 has the dimension 10× 10 pixels, the peak intensity I0 =
1.0, and moves 10 units in the positive x-direction. Feature 2 has the
dimension 20× 20 pixels, the peak intensity I0 = 1.0, and moves 10
units in the negative positive x-direction. Panel c shows the cross-
correlation function and resultant displacement vector applied to
these images.
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Effect of the Intensity of Features

Figure 54 shows the case that features 1 and 2 have the same area but

feature 2 has lower peak intensity than that of feature 1. Panels a and b represent

the images at t1 and t2, respectively. The cross-correlation result is shown in panel

c. From Figure 54c one can see that there are four peaks and two of them represent

the displacements of features 1 and 2. Here, the cross-correlation algorithm selects

the displacement of feature 1 since the peak associated with the motion of feature 1

is larger than that of feature 2. The result shows that the cross-correlation

algorithm is biased and selects the displacement of the brighter feature.

Figure 55 shows the case where features 1 and 2 have the same area but

feature 2 has the greater peak intensity than that of feature 1. Panels a and b

represent the images at t1 and t2, respectively. The cross-correlation function result

is shown in panel c. From it one can see that there are four peaks and two of them

represent the displacements of features 1 and 2. Here, the cross-correlation

algorithm selects the displacement of feature 2 since the peak associated with the

motion of feature 2 is larger than that of feature 1. As in the previous result, the

cross-correlation algorithm selects the displacement of the brighter feature.
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(a) Image at time t1.
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(b) Image at time t2.
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(c) Cross-correlation function.

Figure 54. Panels a and b show that two square features 1 and 2
move 10 units in opposite directions in the time interval ∆t = t2−t1.
Feature 1 has the dimension 10× 10 pixels, the peak intensity I0 =
1.0, and moves 10 units in the positive x-direction. Feature 2 has the
dimension 10× 10 pixels, the peak intensity I0 = 0.5, and moves 10
units in the negative positive x-direction. Panel c shows the cross-
correlation function and resultant displacement vector applied to
these images.
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(a) Image at time t1.
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(b) Image at time t2.

−40 −20 0 20 40
x Lag (Pixels)

−40

−20

0

20

40

y 
La

g 
(P

ix
el

s)

0.0 0.2 0.4 0.6 0.8
Cross−Correlation  (N = 1)

(c) Cross-correlation function.

Figure 55. Panels a and b show that two square features 1 and 2
move 10 units in opposite directions in the time interval ∆t = t2−t1.
Feature 1 has the dimension 10× 10 pixels, the peak intensity I0 =
1.0, and moves 10 units in the positive x-direction. Feature 2 has the
dimension 10× 10 pixels, the peak intensity I0 = 2.0, and moves 10
units in the negative positive x-direction. Panel c shows the cross-
correlation function and resultant displacement vector applied to
these images.
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Effect of Both Area and
Intensity of Features

Figure 56 shows the case that feature 2 is larger in area ( by

approximately 2×) than feature 1, but its intensity is lower (by approximately

0.5×) than that of feature 1. Panels a and b represent the images at t1 and t2,

respectively. The cross-correlation result is shown in panel c. From Figure 56c one

can see that there are four peaks and two of them represent the displacements of

features 1 and 2. Here, the cross-correlation algorithm selects the displacement of

feature 1 since the peak associated with the motion of feature 1 is larger than that

of feature 2. From the result, one can see that the effect of the intensity of features

is greater than that of their areas. The cross-correlation algorithm selects the

displacement of the brighter feature although both the intensity and the area affect

the shape of the cross-correlation function.

Figure 57 shows the case that feature 2 is larger in are (by

approximately 4×) than feature 1, but its intensity is lower (by approximately

0.5×) than that of feature 1. Panels a and b represent the images at t1 and t2,

respectively. The cross-correlation result is shown in panel c. From Figure 57c one

can see that four peaks exist and two of them represent the displacements of

features 1 and 2. Here, the cross-correlation algorithm selects the displacement of

feature 1 since the peak associated with the motion of feature 1 is larger than that

of feature 2. As in the previous case, one can see that the effect of the intensity of

features is greater than that of areas. The cross-correlation algorithm selects the

displacement of the brighter feature although both the intensity and the area affect

the resultant displacement vector.

Figure 58 shows the case that feature 2 is larger in area (more than 4×)

than feature 1, but its peak intensity is lower (by approximately 0.5×) than that of
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feature 1. Panels a and b represent the images at t1 and t2, respectively. The

cross-correlation result is shown as Figure 58c. From Figure 58c one can see that

there are four peaks and two of them represent the displacements of features 1 and

2. Here, the cross-correlation algorithm selects the displacement of feature 2 since

the peak associated with the motion of feature 2 is brighter than that of feature 1.

The result shows that the cross-correlation algorithm could select the displacement

of the larger and dimmer feature, although the effect of intensity of features is

much greater than that of their areas.

From the results of a series of non-uniformity tests, the following

observations were made:

(1) the cross-correlation algorithm selects the displacement of a larger feature if the

intensities of features are the same,

(2) the cross-correlation algorithm selects the displacement of a brighter feature if

the areas of features are the same, and

(3) the intensity and the area are both influencing factors of the cross-correlation

algorithm, but the effect of the intensity is much greater than that of the area

(more than 4×).
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(a) Image at time t1.
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(b) Image at time t2.
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(c) Cross-correlation function.

Figure 56. Panels a and b show that two square features 1 and 2
move 10 units in opposite directions in the time interval ∆t = t2−t1.
Feature 1 has the dimension 10× 10 pixels, the peak intensity I0 =
1.0, and moves 10 units in the positive x-direction. Feature 2 has the
dimension 14× 14 pixels, the peak intensity I0 = 0.5, and moves 10
units in the negative positive x-direction. Panel c shows the cross-
correlation function and resultant displacement vector applied to
these images.
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(a) Image at time t1.
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(b) Image at time t2.
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(c) Cross-correlation function.

Figure 57. Panels a and b show that two square features 1 and 2
move 10 units in opposite directions in the time interval ∆t = t2−t1.
Feature 1 has the dimension 10× 10 pixels, the peak intensity I0 =
1.0, and moves 10 units in the positive x-direction. Feature 2 has the
dimension 20× 20 pixels, the peak intensity I0 = 0.5, and moves 10
units in the negative positive x-direction. Panel c shows the cross-
correlation function and resultant displacement vector applied to
these images.
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(a) Image at time t1.
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(b) Image at time t2.
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(c) Cross-correlation function.

Figure 58. Panels a and b show that two square features 1 and 2
move 10 units in opposite directions in the time interval ∆t = t2−t1.
Feature 1 has the dimension 10× 10 pixels, the peak intensity I0 =
1.0, and moves 10 units in the positive x-direction. Feature 2 has the
dimension 24× 24 pixels, the peak intensity I0 = 0.5, and moves 10
units in the negative positive x-direction. Panel c shows the cross-
correlation function and resultant displacement vector applied to
these images.
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Effects of Histogram Equalization

From the previous section, the results of non-uniformity tests show that

the intensity of features influences the performance of the cross-correlation

algorithm. That is, the cross-correlation algorithm is likely biased by the motion of

bright features in the interrogation window. For example, the cross-correlation

algorithm may underestimate the wind vector if a large and bright feature moves at

lower speed than other dim and small features in the interrogation window. In this

case, one may apply histogram equalization to images before computing the

cross-correlation function. Histogram equalization is a method in image processing

that allows the brightness of features to be adjusted by using the image’s

histogram. Schols and Eloranta (1992) used histogram equalization to distribute

the influence of aerosol features and compute the horizontal wind vectors from lidar

backscatter images. To test the effects of histogram equalization, mean

displacement vectors were computed with and without histogram equalization

under controlled conditions. Here, the velocity field of relatively strong turbulent

flow (the aerodynamic roughness length z0 = 1.5 m; flow field altitude of 50 m) is

applied to N = 100 pairs of synthetic backscatter images with and without

histogram equalization, and the mean resultant displacement vectors and the

standard deviation associated with different synthetic backscatter images are

computed. Figure 59 shows the results of the tests for histogram equalization.

Panels a and b show the mean cross-correlation functions with and without

histogram equalization, respectively. Figure 59c shows the velocity field used to

generate the second image of N = 100 pairs of synthetic backscatter images. The

mean and the standard deviation of the velocity field are (11.6, 0.145)

(pixels/frames) and (2.40, 1.48) (pixels/frames), respectively. The results show that
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the mean and the standard deviation of the resultant displacement vectors, with

histogram equalization are (10.9, 0.0860) (pixels) and (0.449, 0.105) (pixels),

respectively. That is, the magnitude of the resultant vector is 6.31% lower than

that expected from the given velocity field. On the other hand, the mean and the

standard deviation of the resultant displacement vectors, without histogram

equalization are (11.2, 0.0899) (pixels) and (1.05, 0.409) (pixels), respectively. That

is, the magnitude of the resultant vector is 3.36% lower than that expected from

the given velocity field. Thus, the performance of the cross-correlation algorithm,

for this synthetic test, is likely decreased by applying histogram equalization. One

of the major impacts of histogram equalization is to lower the performance of the

cross-correlation algorithm by broadening the peak increasing ambiguity of the

peak location. Comparing Figures 59a and 59b, one can see that the peak of the

mean cross-correlation with histogram equalization is broader compared to the one

without histogram equalization. In this case, it is more difficult to locate the peak

via polynomial fitting, and such difficulty affects the performance of the

cross-correlation algorithm.
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(a) Histogram equalization.
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(b) Non histogram equalization.
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(c) Velocity field.

Figure 59. The mean cross-correlation function for N = 100 pairs of
synthetic backscatter images is calculated by two different methods,
histogram equalization of synthetic backscatter imges applied before
computing the cross-correlation function, and without histogram
equalization. Panels a and b show the mean cross-correlation func-
tions with histogram equalization and non histogram equalization,
respectively. The results show that non histogram equalization pro-
duces the displacement vector, closer to that predicted from the
velocity field as shown in panel c.
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Effects of the Edge of a Scan Sector

When one scans the atmosphere horizontally with an aerosol lidar (PPI

scan), the shape of the image is a sector. In this case, one can extract full square

blocks in the middle of the scan area, but one cannot obtain full blocks if they

extend beyond the edge of the scan. If a predominant feature in the scan area is

cut by an edge line, it is difficult to estimate the wind velocity. One example of this

problem is demonstrated in Figure 60. It shows a Gaussian feature of the peak

intensity I0 = 1.0 cut by a diagonal edge line y = x. The image of a Gaussian

feature that moves 10 units in the positive x-direction in the time interval

∆t = t2 − t1 is shown at time t2 in Figure 60b. Here, one can see that more than

half of the Gaussian feature disappears due to its motion. Figure 60c shows the

cross-correlation function and the resultant displacement vector corresponding to

these images. The resultant displacement vector is (5.0, 5.0) (pixels) which is

different from the mean of the true velocity field (10, 0) (pixels). From this example,

the following observations associated with the effects of an edge were made:

(1) the magnitude of the resultant displacement vector is lower than that expected

from the velocity field if a predominant feature is cut by an edge line, and

(2) the direction of the resultant displacement vector tends to be parallel to an

edge line if a predominant feature is cut by an edge line.
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(a) Image at time t1. (b) Image at time t2.

(c) Cross-correlation function.

Figure 60. Effects of image edge are investigated by using a Gaus-
sian feature cut by an edge line. Panels a and b show that the
Gaussian feature moves 10 units in the positive x-direction in the
time interval ∆t = t2 − t1, and is cut by a edge line y = x. Panel c
shows the cross-correlation function and the resultant displacement
vector applied to these images. The resultant displacement vector is
(5.00, 5.00) pixels which is different from the expected displacement
vector (10.0, 0.00) pixels.
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Features Cut by the Edge of the
Interrogation Window

Description of the Problem

When aerosol features move in the time interval ∆t = t2 − t1 between

consecutive scans, some features may straddle the edges of the interrogation

window. In this case, such features are cut by the edges of the block. To investigate

the effects of straddling features, a rectangular feature of dimensions 20× 10 pixels

with a constant velocity (u, v) = (10.0, 0.00) (pixels/frames) is used. Figure 61

shows one example of the rectangular feature entering the interrogation window.

Panel a shows the feature straddling the interrogation window at t1. The feature is

cut by a block edge. Panel b shows the feature at t2. After moving 10 units in the

positive x-direction, the feature is entirely within the interrogation window. Panel c

shows the cross-correlation function and the resultant displacement vector

computed from these images. The resultant displacement vector is (5.00, 0.00)

pixels which is significantly lower than the expected displacement vector of

(10.0, 0.00) pixels. The result shows that the cross-correlation algorithm

underestimates the displacement when features are cut as they enter the block.

Figure 62 shows one example of the rectangular feature leaving the

interrogation window. Panel a shows the feature is entirely inside the block at t1.

Panel b shows the image at t2. After moving 10 units in the positive x-direction,

the feature is cut by the right edge of the block. Panel c shows the cross-correlation

function and the resultant displacement vector computed from these blocks. As the

result shown in Figure 61, the resultant displacement vector is (5.00, 0.00) pixels

which is significantly lower than the expected displacement vector of (10.0, 0.00)

pixels. The result shows that the cross-correlation algorithm underestimates the
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(b) Image at time t2.
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(c) Cross-correlation function.

Figure 61. Effects of a feature entering the interrogation window
are investigated by using a rectangular pulse of dimensions 20× 10
pixels moving 10 units in the positive x-direction in time interval
∆t = t2 − t1. Panel a shows the feature just entering to the inter-
rogation window at t1. The feature is cut by an image edge. Panel
b shows the image at t2. After moving 10 units in the positive x-
direction, the feature is in the interrogation window. Panel c shows
the the cross-correlation function and the resultant displacement
vector applied to these images. The resultant displacement vector
is (5.00, 0.00) pixels which is significantly lower than the expected
displacement vector (10.0, 0.00) pixels.
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displacement of features straddling the block edge as they leave the interrogation

window.

From these examples, the following observations associated with features

straddling and entering or leaving the interrogation window were made:

(1) the magnitude of the resultant displacement vector is lower than that expected

from the velocity field if aerosol features are cut when entering the interrogation

window, and

(2) the magnitude of the resultant displacement vector is lower than that expected

from the velocity field if aerosol features are cut when leaving the interrogation

window.

These underestimations may not be apparent for point-like particles (as used in

PIV) entering or leaving the block edge, since it is less likely they are cut. However,

these underestimations must be addressed if the cross-correlation algorithm is

applied to lidar backscatter images since aerosol features are larger.
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(a) Image at time t1.
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(b) Image at time t2.
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(c) Cross-correlation function.

Figure 62. Effects of a feature leaving the interrogation window
are investigated by using a rectangular pulse of dimensions 20× 10
pixels moving 10 units in the positive x-direction in time interval
∆t = t2 − t1. Panel a shows the feature is in the interrogation
window at t1. Panel b shows the image at t2. After moving 10 units
in the positive x-direction, the feature is cut by an image edge.
Panel c shows the the cross-correlation function and the resultant
displacement vector applied to these images. As the result shown
in Figure 61, the resultant displacement vector is (5.00, 0.00) pixels
which is significantly lower than the expected displacement vector
(10.0, 0.00) pixels.
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Application of the Tukey Window

The cross-algorithm is biased toward underestimation of the resultant

displacement vector if aerosol features straddle while eithering or leaving the

interrogation window. Such underestimation is likely associated with the fact that

these features are cut by image edges. To reduce the undesirable effects of these

features, one may apply window functions and taper the intensity of features near

the block edges. One of many possible window functions that may be applied is the

Tukey window. Let N be the dimension in the x-direction. Then, the 1-D Tukey

window w(x) is defined as

w(x) =


1
2
(1 + cos [π( 2x

α(N−1) − 1)]) : 0 ≤ x ≤ α(N−1)
2

1 : α(N−1)
2
≤ x ≤ 1(N − 1)(1− α

2
)

1
2
(1 + cos [π( 2x

α(N−1) −
2
α

+ 1)]) : (N − 1)(1− α
2
) ≤ x ≤ (N − 1)

where α is a constant (Tukey, 1967). The 1-D Tukey window has a cosine lobe of

the width αN
2

that is convolved with a rectangular window of the width (1− α
2
)N .

The Tukey window can be extended to two dimensions. In this case, the 2-D Tukey

window w(x, y) is expressed as

w(x, y) =



1
2
(1 + cos [π( 2x

α(N−1) − 1)]) : 0 ≤ x ≤ α(N−1)
2

1 : α(N−1)
2
≤ x ≤ 1(N − 1)(1− α

2
)

1
2
(1 + cos [π( 2x

α(N−1) −
2
α

+ 1)]) : (N − 1)(1− α
2
) ≤ x ≤ (N − 1)

1
2
(1 + cos [π( 2y

α(N−1) − 1)]) : 0 ≤ y ≤ α(N−1)
2

1 : α(N−1)
2
≤ y ≤ 1(N − 1)(1− α

2
)

1
2
(1 + cos [π( 2y

α(N−1) −
2
α

+ 1)]) : (N − 1)(1− α
2
) ≤ y ≤ (N − 1)
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(a) 1-D Tukey window.
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(b) 2-D Tukey window.

Figure 63. Panels a and b show the 1-D and the 2-D Tukey windows
with α = 0.20 and dimensions of 100 pixels.

Figure 63 shows the 1-D and 2-D Tukey windows. The intensity is unity

in the middle of the interrogation area and drops to zero at the image edges. The

Tukey window preserves the intensity of most aerosol features in the interrogation

window, but reduces the intensity of aerosol features near the image edges.

Figures 64 and 65 show the performance of the cross-correlation

algorithm for a rectangular pulse straddling and entering or leaving the

interrogation window with image edges masked by the Tukey window. These cases

are similar to the examples in Figures 61 and 62 respectively. The results show that

the resultant displacement vectors for both cases are (9.00, 0.00) pixels. Comparing

with corresponding results without masking, (5.00, 0.00) pixels, these displacement

vectors are significantly closer to the expected displacement vectors (10.0, 0.00)

pixels. Thus, the Tukey window reduces the error of the displacement vector

associated with entering or exiting features cut by the image edges.
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(a) Masked image at time t1.
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(b) Masked image at time t2.
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(c) Cross-correlation function.

Figure 64. Effects of the Tukey window are investigated by using a
rectangular pulse of dimensions 20×10 pixels moving 10 units in the
positive x-direction in time interval ∆t = t2− t1. Panel a shows the
feature entering the interrogation window at t1. The feature is cut
by an image edge but its intensity near the image edge is reduced by
the Turkey window. Panel b shows the image at t2. After moving
10 units in the positive x-direction, the feature is entirely in the
interrogation window. Panel c shows the cross-correlation function
and the resultant displacement vector applied to these images. The
resultant displacement vector is (9.00, 0.00) pixels which is slightly
lower than the expected displacement vector (10.0, 0.00) pixels, but
the performance of the cross-correlation algorithm increases.
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(a) Masked image at time t1.
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(b) Masked image at time t2.
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(c) Cross-correlation function.

Figure 65. Effects of the Tukey window are investigated by using a
rectangular pulse of dimensions 20 × 10 pixels moving 10 units in
the positive x-direction in time interval ∆t = t2− t1. Panel a shows
the feature at t1. Panel b shows the image at t2. After moving 10
units in the positive x-direction, the feature is in the interrogation
window, the feature is cut by an image edge but its intensity near
the image edge is reduced by the Turkey window. Panel c shows
the the cross-correlation function and the resultant displacement
vector applied to these images. The resultant displacement vector
is (9.00, 0.00) pixels which is slightly lower than the expected dis-
placement vector (10.0, 0.00) pixels, but much closer than the result
without the Tukey window as shown in Figure 61.
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Performance of the Cross-Correlation
Algorithm

From the results, one can see that the cross-correlation algorithm gives a

perfect displacement vector only if the velocity field is perfectly uniform in the

interrogation window and no features straddle the block edges while entering or

leaving. However, the performance of the cross-correlation algorithm decreases as

the non-uniformity of the velocity field increases because only the global peak of

the cross-correlation function is used to give one displacement vector for an entire

block. The information contained at non-global peak lags is not used.

For the synthetic data, the shape of the cross-correlation function is not

symmetric, and it tends to be weighted more toward lower lags, close to the origin

(xlag, ylag) = (0, 0). As a result, the magnitudes of the resultant displacement

vectors tend to be slightly lower than the ones predicted from the given velocity

fields. In addition, the cross-correlation algorithm tends to underestimate the

resultant displacement vector if features straddle the block edges while entering or

leaving because the shape of the cross-correlation function is distorted by such

clipping. Thus, the underestimation of the resultant displacement vectors may be

present if one applies the cross-correlation algorithm to estimate the wind velocity

from lidar backscatter images. Underestimation of the displacement vector is likely

associated with the following observations:

(1) features with lower velocity tend to appear in both images of two consecutive

frames, while those with higher velocity tend to move out from the interrogation

window, and

(2) features straddling and entering or leaving the block edge are sources of

undesirable effects of the cross-correlation algorithm.
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The observation (1) is likely associated with non uniformity of the

velocity field within the interrogation window. The underestimation of the

resulting displacement vector due to the observation (1) can be reduced by

choosing a smaller interrogation window in which the velocity field may be more

uniform. The observation (2) is likely associated with the edge effects. The

underestimation of the resulting displacement vector due to the observation (2) can

be reduced by using window functions to taper the block edges, and choosing the

larger interrogation window where the relative sizes of aerosol features are small

and negligible compared with the size of the interrogation window. To maximize

the performance of the cross-correlation algorithm, one should choose the size of

the interrogation window that compromises the observations (1) and (2).

From the results of tests of the cross-correlation algorithm using

synthetic backscatter images, the performance of the cross-correlation algorithm is

maximized by:

(a) using zero-padded images,

(b) using window functions (i.e., the Tukey window) to eliminate the sharp edges,

and

(c) applying the multiple pass interrogation and curve fitting (i.e., polynomial

fitting).

Since the FFT method is computationally more efficient than the covariance

method and there is no difference in their results, the FFT method is preferable.

The results show that the histogram equalization does not increase the performance

of the cross-correlation algorithm, and hence is not recommended. Figure 66 shows

the velocity field, created by the sum of the uniform flow and the turbulent

perturbation field (the aerodynamic roughness length z0 = 0.5 m; altitude 30 m),

applied to N = 100 pairs of synthetic backscatter images, and the result of the
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cross-correlation algorithm with the FFT method, using zero-padded images,

tapering by the Tukey window, multiple pass interrogation, and curve fitting. The

mean velocity and standard deviation of the given velocity field are (11.08, 0.104)

(pixels/frames) and (1.97, 1.23) (pixels/frames), respectively. The mean and

standard deviation of the resultant displacement vector, by applying the

cross-correlation algorithm described above, are (10.93, 0.0986) (pixels) and

(0.816, 0.403) (pixels), respectively. The error of the magnitude of the displacement

vector was reduced to 1.35%.
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(a) Velocity field.
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(b) Cross-correlation function.

Figure 66. Panel a shows the velocity field, created by the sum
of the uniform flow and the turbulent perturbation field, is ap-
plied to N = 100 pairs of synthetic backscatter images. The mean
velocity and standard deviation are (11.08, 0.104) (pixels/frames)
and (1.97, 1.23) (pixels/frames), respectively. Panel b shows the
mean cross-correlation function and resultant displacement vector.
The mean and standard deviation of the displacement vector are
(10.93, 0.0986) (pixels) and (0.816, 0.403) (pixels), respectively.
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Limitation of the Study

This study is based on evaluations of horizontal wind vectors that are

2-D. Real turbulent atmospheric flow is 3-D and a source of false apparent motions

which cannot be simulated with 2-D flows. For example, suppose a large spherical

aerosol feature moves upward and crosses the horizontal scan plane in the time

interval ∆t = t2 − t1, as shown as Figure 67a. In this case, the 2-dimensional blocks

1 and 2, look like the ones shown in Figure 67b. Here, one sees that the size of the

spherical feature appears to increase as the feature passes through the horizontal

plane. Then, the application of the cross-correlation algorithm would show

divergence. However, the actual size of the feature in 3-D does not change. So, a

full error analysis cannot be conducted unless the 3-D space and flow field are taken

into account. Since the study does not include the vertical component of the wind

vector, no conclusions can be made about the impact of “false apparent motions”.

In addition to the false apparent motions, the real lidar data contains

random noise and attenuation. Furthermore, the real lidar data is collected in a

polar coordinate system and interpolated to a Cartesian grid before applying

motion estimation algorithms. Therefore, the true resolution of the lidar

backscatter data decreases with increasing range from the lidar system. The

synthetic backscatter fields used in this thesis do not provide the ability to

determine the effects of these artifacts.
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Block 1 
 

Block 2 

(a) Motion of the spherical feature in the 3D space.
 

Block 1 Block 2 

(b) False apparent motion in the 2D plane.

Figure 67. False apparent motion of the spherical feature. Panel
a represents the upward motion of the spherical feature. Panel b
represents the motion of the spherical feature in the 2-dimensional
plane. The size of the feature appears to be increased.
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Conclusions

The cross-correlation approach to deriving motion vectors from image

sequences is widely used in science and engineering. The most widely used form of

cross-correlation is PIV in which the flow is seeded with tiny particles. These

tracers are distributed approximately uniformly throughout the image and their

discrete nature results in cross-correlation functions with relatively sharp peaks and

low ambiguity. Cross-correlation applied to atmospheric aerosol lidar images results

in broad peaks and increased ambiguity because the tracer of the flow is a

continuous field of aerosol backscatter intensity that changes shape and brightness

in response to the flow. The cross-correlation algorithm was applied several times

previously to real lidar data and several attempts were made to compare the results

with other forms of wind measurements. However, an evaluation of the

cross-correlation algorithm using synthetic aerosol backscatter images and synthetic

velocity fields had not been performed.

The results show that the cross-correlation algorithm gives perfect

displacement vectors if the flow is uniform in the interrogation window, and no

aerosol features straddle the edge of the blocks while entering or leaving the

interrogation windows. However, the performance of the cross-correlation algorithm

decreases as the flow fields become non-uniform, and aerosol features straddle the

block edges. It was also found that the magnitudes of the resultant displacement

vectors tend to be slightly lower than the means computed from the corresponding

velocity fields. Such underestimation may be attributed to the fact that features

with lower velocity tend to appear in both images of two consecutive frames, while

those that have a higher velocity tend to move out of the interrogation window. In

addition, edge straddling features are also sources of velocity underestimation.
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Finally, it was also found that both the area and the intensity of features do not

influence the performance of the cross-correlation algorithm equally. It was found

that the intensity of the features contributes more than a factor of four compared

to the equivalent area.

The results show that using zero-padded input arrays, tapering the block

edges with the Tukey window, and applying the multiple pass interrogation and

curve fitting (i.e., polynomial fitting) can be used to minimize the underestimation

of the resultant vector. By maximizing the performance of the cross-correlation

algorithm, the mean resultant displacement vector for moderate turbulent flows

without large coherent flow structures was found to be within a few percent of the

one expected from the corresponding velocity fields. A study involving 3-D velocity

fields and aerosol structures, and that mimics some of the artifacts of real lidar

data, is suggested for a more comprehensive understanding.
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Debella-Gilo, M. and Kääb, A. (2011). Sub-pixel precision image matching for

measuring surface displacements on mass movements using normalized

cross-correlation. Remote Sens. Environ., 115(1):130–142.
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APPENDIX A

THE CROSS-CORRELATION FUNCTION
FOR A GAUSSIAN FEATURE

Analytical Approaches Using
a Gaussian Feature

Gaussian Integrals

The cross-correlation functions for lidar backscatter images are usually calculated

numerically by the fast Fourier transform (FFT). However, for some simple cases,

one can find the cross-correlation function analytically, and find exact solution of

the resultant displacement vector. Here, analytical methods using Gaussian

features are introduced. Backscatter intensities of such features can be expressed by

a Gaussian function, e−λx
2
, where λ is a constant. To calculate the cross-correlation

functions of such backscatter images, one needs to evaluate the following integral.

I =

∞∫
−∞

e−λx
2

dx. (1)

This type of integrals can be evaluated as follows. First, squaring both sides of this

equation gives

I2 =

 ∞∫
−∞

e−λx
2

dx

 ∞∫
−∞

e−λx
2

dx

 . (2)
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Next, switch x and y for the second integral.

I2 =

 ∞∫
−∞

e−λx
2

dx

 ∞∫
−∞

e−λy
2

dy

 . (3)

This integral can be expressed as the double integral in the xy-plane.

I2 =

∞∫
−∞

∞∫
−∞

e−λ(x
2+y2) dx dy. (4)

The limits of integration and the area element in the Cartesian coordinates are

shown in Figure 68a. Now, one can rewrite this integral in polar coordinates,

ρ =
√
x2 + y2, and φ = tan−1( y

x
). In this case, the area element becomes

dxdy = ρdρdφ, and the limits become 0 < ρ <∞, and 0 < φ < 2π. The limits of

integration and the area element in the polar coordinates are shown in Figure 68b.

Using the polar coordinates, (ρ, φ), the integral becomes

I2 =

2π∫
0

∞∫
0

e−λρ
2

ρ dρ dφ. (5)

The ρ integral can be evaluated by letting u = −λρ2 and du = −2λρdρ,

(− 1
2λ
du = ρdρ). Then, one has

I2 = − 1

2λ

2π∫
0

ρ→∞∫
ρ=0

eu du dφ (6)

and evaluating u integral gives

I2 = − 1

2λ

2π∫
0

[eu]|ρ→∞ρ=0 dφ (7)
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that is,

I2 = − 1

2λ

2π∫
0

[e−λρ
2

]
∣∣∣ρ→∞
ρ=0

dφ (8)

I2 = − 1

2λ

2π∫
0

[e−∞ − e0] dφ (9)

I2 = − 1

2λ

2π∫
0

[0− 1] dφ (10)

I2 =
1

2λ

2π∫
0

dφ. (11)

The φ integral is
2π∫
0

dφ = 2π. Thus one has

I2 =
1

2λ
2π (12)

or

I2 =
π

λ
. (13)

Finally, taking square roots both sides of this equation, one can get

I =

√
π

λ
(14)

that is,

I =

∞∫
−∞

e−λx
2

dx =

√
π

λ
. (15)

Suppose the Gaussian function is instead, e−λ(x−c)
2
, where c is a constant. Then,

the position of the peak is shifted c units from the origin. If c is positive, the peak

is shifted to the positive x direction. On the other hand, if c is negative, the peak is



164

shifted to the negative x direction. However, the size and the shape of the Gaussian

function is unaltered, so the result of the integral must be the same. That is,

∞∫
−∞

e−λ(x−c)
2

dx =

√
π

λ
. (16)

This equation is also helpful to find the cross-correlation function analytically.
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(a) The limits of integration and the area element in the
2-D plane (Cartesian coordinates).

(b) The limits of integration and the area element in the
2-D plane (polar coordinates).

Figure 68. Limits of integration in the 2-D Carte-
sian and polar coordinates.
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One-Dimensional Case in
an Uniform Flow

Suppose that there is only one Gaussian feature in a 1-D space, and the Gaussian

feature is at the origin, x = 0, at time t1. Then, the backscatter image at time t1,

f1(x), can be expressed as

f1(x) = I0e
−x2 , (17)

where I0 is the peak backscatter intensity of the Gaussian feature. Suppose further

that the Gaussian feature moves 10 units to the right in the time interval

∆t = t2 − t1. Then, the backscatter image at time t2, f2(x), can be expressed as

f2(x) = I0e
−(x−10)2 , (18)

where I0 is the peak backscatter intensity of the Gaussian feature. Then, the 1-D

cross-correlation function, rx, applied to these images can be calculated as follows.

The Fourier transform of f1 = I0e
−x2 , F1(k) is

F1(k) =

∞∫
−∞

I0e
−x2e−i2πkx dx (19)

or

F1(k) =

∞∫
−∞

I0e
−(x2+i2πkx) dx. (20)

To evaluate this integral, we add and subtract (iπk)2 to the power of e and

complete the square. Then, one has

F1(k) =

∞∫
−∞

I0e
−[x2+i2πkx+(iπk)2−(iπk)2] dx. (21)
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After simplifying it gives

F1(k) = I0e
−π2k2

∞∫
−∞

e−(x+iπk)2 dx. (22)

Since
∞∫
−∞

e−λ(x−c)
2

dx =
√

π
λ

for any constant c, the integral
∞∫
−∞

e−(x+iπk)2 dx =
√

π
λ
,

where λ = 1. Thus, F1(k) can be expressed as

F1(k) = I0e
−π2k2

√
π

1
(23)

or

F1(k) =
√
πI0e

−π2k2 . (24)

Next, the Fourier transform of f2 = I0e
−(x−10)2 , F2(k) is

F2(k) =

∞∫
−∞

I0e
−(x−10)2e−i2πkx dx. (25)

or, by expanding the power of e gives

F2(k) =

∞∫
−∞

I0e
−(x2−20x+100+i2πkx) dx (26)

F2(k) = I0

∞∫
−∞

e−[x
2+(i2πk−20)x+100] dx. (27)
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As F1(k), F2(k) can be calculated by adding and subtracting (iπk − 10)2 to the

power of e.

F2(k) = I0

∞∫
−∞

e−[x
2+(i2πk−20)x+100+(iπk−10)2−(iπk−10)2] dx. (28)

After simplifying it gives

F2(k) = I0

∞∫
−∞

e−(x+iπk−10)2e−100e(iπk−10)
2

dx (29)

F2(k) = I0e
−100e(iπk−10)

2

∞∫
−∞

e−(x+iπk−10)2 dx. (30)

Since
∞∫
−∞

e−λ(x−c)
2

dx =
√

π
λ

for any constant c, the integral

∞∫
−∞

e−(x+iπk−10)2 dx =
√

π
λ
, where λ = 1. Thus, F2(k) becomes

F2(k) = I0e
−100e(iπk−10)

2

√
π

1
(31)

or

F2(k) =
√
πI0e

−100e(iπk−10)
2

. (32)

Now taking complex conjugate of F2(k) gives

F ∗2 (k) =
√
πI0e

−100e(−iπk−10)
2

(33)

or

F ∗2 (k) =
√
πI0e

−100e(iπk+10)2 . (34)
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The cross-correlation function rx is defined as

rx = F−1
[
F1(k)F ∗2 (k)

S1S2

]
(35)

or

rx =

∞∫
−∞

F1(k)F∗2(k)ei2πkx

S1S2

dk, (36)

where F1(k) is the Fourier transform of f1(x), F ∗2 (k) the complex conjugate of the

Fourier transform of f2(x), S1 the standard deviation of f1(x), S2 the standard

deviation of f2(x), and F−1 represents the inverse Fourier transform. Substituting

F1(k) =
√
πI0e

−π2k2 and F ∗2 (k) =
√
πI0e

−100e(iπk+10)2 into this equation, one has

rx =
1

S1S2

∞∫
−∞

√
πI0e

−π2k2
√
πI0e

−100e(iπk+10)2ei2πkx dk (37)

rx =
πI20
S1S2

e−100
∞∫

−∞

e−π
2k2e(iπk+10)2ei2πkx dk (38)

or, by expanding the power of e and rearranging gives

rx =
πI20
S1S2

e−100e100
∞∫

−∞

e−2π
2[k2− i

π
(10+x)k] dk. (39)

The term e−100e100 = e0 = 1. In addition, adding and subtracting
[
i
2π

(10 + x)k
]2

to

the power of e gives

rx =
πI20
S1S2

∞∫
−∞

e−2π
2(k2− i

π
(10+x)k+[ i

2π
(10+x)k]

2
−[ i

2π
(10+x)k]

2
) dk. (40)
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After simplifying it gives

rx =
πI20
S1S2

e−
(x+10)2

2

∞∫
−∞

e−2π
2[k− i

2π
(x+10)]2 dk. (41)

Since
∞∫
−∞

e−λ(k−c)
2

dk =
√

π
λ

for any constant c, the integral

∞∫
−∞

e−2π
2[k− i

2π
(x+10)]2 dk =

√
π
λ
, where λ = 2π2. Thus,

rx =
πI20
S1S2

e−
(x+10)2

2

√
π

2π2
. (42)

After simplifying it gives

rx =

√
π

2

I20
S1S2

e−
(x+10)2

2 . (43)

Finally, defining xlag = −x for the lag, the cross-correlation function rxlag can be

expressed as

rxlag =

√
π

2

I20
S1S2

e−
(−xlag+10)2

2 (44)

or

rxlag =

√
π

2

I20
S1S2

e−
(xlag−10)2

2 , (45)

where I0 is the peak backscatter intensity of the given Gaussian feature, S1 is the

standard deviation of f1(x), and S2 is the standard deviation of f2(x).

Two-Dimensional Case in
an Uniform Flow

One can extend the concepts of the 1-D case, described above, to the 2-D case.

Suppose that there is only 1 Gaussian feature in a 2-D space, and the Gaussian

feature is at the origin, (x, y) = (0, 0), at time t1. Then, the backscatter image at
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time t1, f1(x, y), can be expressed as

f1(x, y) = I0e
−(x2+y2), (46)

where I0 is the peak backscatter image of the Gaussian feature. Suppose further

that the Gaussian feature moves 10 units to the right (positive x direction) and 10

units upward (positive y direction) in the time interval ∆t = t2 − t1. Then, the

backscatter image at time t2, f2(x, y), can be expressed as

f2(x, y) = I0e
−[(x−10)2+(y−10)2], (47)

where I0 is the peak backscatter intensity of the Gaussian feature. Now, the 2-D

cross-correlation function, rx,y, applied to these images can be calculated as follows.

The Fourier transform of f1(x, y) = I0e
−(x2+y2), F1(kx, ky) is

F1(kx, ky) =

∞∫
−∞

∞∫
−∞

f1(x, y)e−i2π(kxx+kyy) dx dy (48)

F1(kx, ky) =

∞∫
−∞

∞∫
−∞

I0e
−(x2+y2)e−i2π(kxx+kyy) dx dy. (49)

To evaluate this double integral analytically, one can make complete squares in the

power of e, as we did for the 1-D case. Then, the equation above can be simplified

as

F1(kx, ky) = I0e
(iπkx)2e(iπky)

2

∞∫
−∞

∞∫
−∞

e−(y+iπky)
2

e−(x+iπkx)
2

dx dy. (50)
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Since
∞∫
−∞

e−λ(x−c)
2

dx =
√

π
λ

and
∞∫
−∞

e−λ(y−c)
2

dy =
√

π
λ

for any constant c, the

integral
∞∫

−∞

∞∫
−∞

e−(y+iπky)
2

e−(x+iπkx)
2

dx dy = (

√
π

λ
)(

√
π

λ
), (51)

where λ = 1. Thus, F1(kx, ky) can be expressed as

F1(kx, ky) = I0e
(iπkx)2e(iπky)

2

(

√
π

1
)(

√
π

1
). (52)

After simplifying it gives

F1(kx, ky) = πI0e
−π2(k2x+k

2
y). (53)

Next, one calculates the Fourier transform of f2(x, y), F2(kx, ky), similar to the way

for finding F1(kx, ky). The Fourier transform of f2(x, y) = I0e
−[(x−10)2+(y−10)2],

F2(kx, ky) is

F2(kx, ky) =

∞∫
−∞

∞∫
−∞

f2(x, y)e−i2π(kxx+kyy) dx dy (54)

F2(kx, ky) =

∞∫
−∞

∞∫
−∞

I0e
−[(x−10)2+(y−10)2]e−i2π(kxx+kyy) dx dy. (55)

To evaluate this double integral analytically, one can make complete squares in the

power of e, similar to the way for finding F1(kx, ky). Then, the equation above can

be simplified as

F2(kx, ky) = I0e
−200e(iπkx−10)

2

e(iπky−10)
2

∞∫
−∞

∞∫
−∞

e−[y+(iπky−10)]2e−[x+(iπkx−10)]2 dx dy.

(56)
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Since
∞∫
−∞

e−λ(x−c)
2

dx =
√

π
λ

and
∞∫
−∞

e−λ(y−c)
2

dy =
√

π
λ

for any constant c, the

integral
∞∫

−∞

∞∫
−∞

e−[y+(iπky−10)]2e−[x+(iπkx−10)]2 dx dy = (

√
π

λ
)(

√
π

λ
), (57)

where λ = 1. Thus, F2(kx, ky) can be expressed as

F2(kx, ky) = I0e
−200e(iπkx−10)

2

e(iπky−10)
2

(

√
π

1
)(

√
π

1
). (58)

After simplifying it gives

F2(kx, ky) = πI0e
−200e(iπkx−10)

2

e(iπky−10)
2

. (59)

Now taking complex conjugate of F2(kx, ky) gives

F ∗2 (kx, ky) = πI0e
−200e(−iπkx−10)

2

e(−iπky−10)
2

(60)

or

F ∗2 (kx, ky) = πI0e
−200e(iπkx+10)2e(iπky+10)2 . (61)

The cross-correlation function rx,y is defined as

rx,y = F−1
[
F1(kx, ky)F

∗
2 (kx, ky)

S1S2

]
(62)

or

rx,y =

∞∫
−∞

∞∫
−∞

F1(kx, ky)F
∗
2 (kx, ky)e

i2π(xkx+yky) dkx dky
S1S2

, (63)

where F1(kx, ky) is the Fourier transform of f1(x, y), F ∗2 (kx, ky) the complex

conjugate of the Fourier transform of f2(x, y), S1 the standard deviation of f1(x, y),
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S2 the standard deviation of f2(x, y), and F−1 represents the inverse Fourier

transform. Substituting F1(kx, ky) = πI0e
−π2(k2x+k

2
y) and

F ∗2 (kx, ky) = πI0e
−200e(iπkx+10)2e(iπky+10)2 into this equation, one has

rx,y =
1

S1S2

∞∫
−∞

∞∫
−∞

[πI0e
−π2(k2x+k

2
y)][πI0e

−200e(iπkx+10)2e(iπky+10)2 ]ei2π(xkx+yky) dkx dky.

(64)

As in 1-D case, one can simplify this expression by completing squares for the

powers of e. After some algebra, the expression above becomes

rx,y =
π2I20
S1S2

e−
(x+10)2

2 e−
(y+10)2

2

∞∫
−∞

∞∫
−∞

e−2π
2[ky− i(y+10)

2π
]2e−2π

2[kx− i(x+10)
2π

]2 dkx dky. (65)

Now, let λ = 2π2. Since
∞∫
−∞

e−λ(kx−c)
2

dkx =
√

π
λ

and
∞∫
−∞

e−λ(ky−c)
2

dky =
√

π
λ

for

any constant c, we have

∞∫
−∞

∞∫
−∞

e−2π
2[ky− i(y+10)

2π
]2e−2π

2[kx− i(x+10)
2π

]2 dkx dky = (

√
π

2π2
)(

√
π

2π2
) =

1

2π
(66)

and the cross-correlation function rx,y can be expressed as

rx,y =
π2I20
S1S2

e−
(x+10)2

2 e−
(y+10)2

2 (
1

2π
) (67)

or

rx,y =
πI20

2S1S2

e
−
[
(x+10)2+(y+10)2

2

]
. (68)
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Finally, defining xlag = −x and ylag = −y for the lags, the cross-correlation function

rxlag ,ylag can be expressed as

rxlag ,ylag =
πI20

2S1S2

e
−
[
(−xlag+10)2+(−ylag+10)2

2

]
(69)

or

rxlag ,ylag =
πI20

2S1S2

e
−
[
(xlag−10)2+(ylag−10)2

2

]
, (70)

where I0 is the peak backscatter intensity of the given Gaussian feature, S1 is the

standard deviation of f1(x, y), and S2 is the standard deviation of f2(x, y).

One-Dimensional Diffused Gaussian
Feature in an Uniform Flow

Suppose a 1-D Gaussian feature is moving at a constant rate in the positive

x-direction and at the same time is diffused uniformly. In this case, it is also

possible to find the cross-correlation function analytically. Let the 1-D Gaussian

feature is at the origin at time t1. Then, the backscatter image at time t1, f1(x),

can be expressed as

f1(x) = I0e
−x2 , (71)

where I0 is the peak backscatter intensity of the Gaussian feature. Suppose further

that the peak of the Gaussian feature moves 10 units to the right in the time

interval ∆t = t2 − t1 and the Gaussian feature is diffused uniformly. Then, the

backscatter image at time t2, f2(x), can be expressed as

f2(x) =
I0√

2
e
−(x−10)2

2 , (72)

where I0 is the peak backscatter intensity of the Gaussian feature. The factor 1
2

in

the exponential term represents the diffusion of the Gaussian feature and the
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coefficient 1√
2

normalizes the Gaussian feature. Now, the 1-D cross-correlation

function, rx, applied to these images can be calculated as follows. The Fourier

transform of f1 = I0e
−x2 , F1(k) is

F1(k) =

∞∫
−∞

I0e
−x2e−i2πkx dx (73)

or

F1(k) =

∞∫
−∞

I0e
−(x2+i2πkx) dx. (74)

After evaluating the integral F1(k) can be expressed as

F1(k) =
√
πI0e

−π2k2 (75)

as shown in previous section. Next, the Fourier transform of f2(x) = I0√
2
e
−(x−10)2

2 ,

F2(k) is

F2(k) =

∞∫
−∞

I0√
2

e
−(x−10)2

2 e−i2πkx dx. (76)

As discussed previously, the same techniques can be applied to evaluate this

integral. By completing squares, this integral becomes

F2(k) =
I0√

2
e−50e

1
2
(i2πk−10)2

∞∫
−∞

e−
1
2
(x+i2πk−10)2 dx. (77)

Since
∞∫
−∞

e−λ(x−c)
2

dx =
√

π
λ

for any constant c, the integral

∞∫
−∞

e−
1
2
(x+i2πk−10)2 dx =

√
π
λ
, where λ = 1

2
. Thus, F2(k) can be expressed as

F2(k) =
I0√

2
e−50e

1
2
(i2πk−10)2

√
π

( 12 ) (78)



177

or

F2(k) =
√
πI0e

−50e
1
2
(i2πk−10)2 . (79)

Now taking complex conjugate of F2(k) gives

F ∗2 (k) =
√
πI0e

−50e
1
2
(−i2πk−10)2 (80)

or

F ∗2 (k) =
√
πI0e

−50e
1
2
(i2πk+10)2 . (81)

The cross-correlation function rx is defined as

rx = F−1
[
F1(k)F ∗2 (k)

S1S2

]
(82)

or

rx =

∞∫
−∞

F1(k)F∗2(k)ei2πkx

S1S2

dk, (83)

where F1(k) is the Fourier transform of f1(x), F ∗2 (k) the complex conjugate of the

Fourier transform of f2(x), S1 the standard deviation of f1(x), S2 the standard

deviation of f2(x), and F−1 represents the inverse Fourier transform. Substituting

F1(k) =
√
πI0e

−π2k2 and F ∗2 (k) =
√
πI0e

−50e
1
2
(i2πk+10)2 into this equation, one has

rx =
1

S1S2

∞∫
−∞

√
πI0e

−π2k2
√
πI0e

−50e
1
2
(i2πk+10)2ei2πkx dk (84)

rx =
πI20
S1S2

e−50
∞∫

−∞

e−π
2k2e

1
2
(i2πk+10)2ei2πkx dk. (85)
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As in previous section, we can simplify rx. After some algebra rx becomes

rx =
πI20
S1S2

e−
(x+10)2

3

∞∫
−∞

e−3π
2[k− i(x+10)

3π
]2 dk. (86)

Since
∞∫
−∞

e−λ(k−c)
2

dk =
√

π
λ

for any constant c, the integral

∞∫
−∞

e−3π
2[k− i(x+10)

3π
]2 dk =

√
π
λ
, where λ = 3π2. Thus,

rx =
πI20
S1S2

e−
(x+10)2

3

√
π

3π2
. (87)

After simplifying it gives

rx =

√
π

3

I20
S1S2

e−
(x+10)2

3 . (88)

Finally, defining xlag = −x for the lag, the cross-correlation function rxlag can be

expressed as

rxlag =

√
π

3

I20
S1S2

e−
(−xlag+10)2

3 (89)

or

rxlag =

√
π

3

I20
S1S2

e−
(xlag−10)2

3 , (90)

where I0 is the peak backscatter intensity of the given Gaussian feature, S1 is the

standard deviation of f1(x), and S2 is the standard deviation of f2(x).

Two-Dimensional Diffused Gaussian
Feature in an Uniform Flow

One can extend the concepts of the 1-D diffused Gaussian feature, described above,

to consider the 2-D case. Suppose that there is only one Gaussian feature in a 2-D

space, and the Gaussian feature is at the origin, (x, y) = (0, 0), at time t1. Then,
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the backscatter image at time t1, f1(x, y), can be expressed as

f1(x, y) = I0e
−(x2+y2), (91)

where I0 is the peak backscatter image of the Gaussian feature. Suppose further

that the Gaussian feature moves 10 units to the right (positive x direction), 10

units to the upward (positive y direction), and diffuses uniformly in the xy-plane in

the time interval ∆t = t2 − t1. Then, the backscatter image at time t2, f2(x, y), can

be expressed as

f2(x, y) =
I0
2
e−

[(x−10)2+(y−10)2]
2 , (92)

where I0 is the peak backscatter intensity of the Gaussian feature. The 2-D

cross-correlation function, rx,y, applied to these images can be calculated as follows.

The Fourier transform of f1(x, y) = I0e
−(x2+y2), F1(kx, ky) is

F1(kx, ky) =

∞∫
−∞

∞∫
−∞

f1(x, y)e−i2π(kxx+kyy) dx dy (93)

or

F1(kx, ky) =

∞∫
−∞

∞∫
−∞

I0e
−(x2+y2)e−i2π(kxx+kyy) dx dy. (94)

After evaluating the integral F1(kx, ky) can be expressed as

F1(kx, ky) = πI0e
−π2(k2x+k

2
y) (95)
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as shown in previous section. Next, the Fourier transform of

f2(x, y) = I0
2
e−

[(x−10)2+(y−10)2]
2 , F2(kx, ky) is

F2(kx, ky) =

∞∫
−∞

∞∫
−∞

f2(x, y)e−i2π(kxx+kyy) dx dy (96)

or

F2(kx, ky) =

∞∫
−∞

∞∫
−∞

I0
2
e−

[(x−10)2+(y−10)2]
2 e−i2π(kxx+kyy) dx dy. (97)

To evaluate this double integral analytically, one can make complete squares in the

power of e, as we did in the previous section. Then, the equation above can be

simplified as

F2(kx, ky) =
I0

2
e−100e

1
2
(i2πkx−10)2e

1
2
(i2πky−10)2

∞∫
−∞

∞∫
−∞

e−
1
2
[y+(i2πky−10)]2e−

1
2
[x+(i2πkx−10)]2 dx dy. (98)

Since
∞∫
−∞

e−λ(x−c)
2

dx =
√

π
λ

and
∞∫
−∞

e−λ(y−c)
2

dy =
√

π
λ

for any constant c, the

integral becomes

∞∫
−∞

∞∫
−∞

e−
1
2
[y+(i2πky−10)]2e−

1
2
[x+(i2πkx−10)]2 dx dy = (

√
π

λ
)(

√
π

λ
), (99)

where λ = 1
2
. Thus, F2(kx, ky) can be expressed as

F2(kx, ky) =
I0
2
e−100e

1
2
(i2πkx−10)2e

1
2
(i2πky−10)2

√
π

(1
2
)

√
π

(1
2
)

(100)

or, by simplifying it gives

F2(kx, ky) = πI0e
−100e

1
2
(i2πkx−10)2e

1
2
(i2πky−10)2 . (101)
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Now taking complex conjugate of F2(kx, ky) gives

F ∗2 (kx, ky) = πI0e
−100e

1
2
(−i2πkx−10)2e

1
2
(−i2πky−10)2 (102)

or

F ∗2 (kx, ky) = πI0e
−100e

1
2
(i2πkx+10)2e

1
2
(i2πky+10)2 . (103)

The cross-correlation function rx,y is defined as

rx,y = F−1
[
F1(kx, ky)F

∗
2 (kx, ky)

S1S2

]
(104)

or

rx,y =

∞∫
−∞

∞∫
−∞

F1(kx, ky)F
∗
2 (kx, ky)e

i2π(xkx+yky) dkx dky
S1S2

, (105)

where F1(kx, ky) is the Fourier transform of f1(x, y), F ∗2 (kx, ky) the complex

conjugate of the Fourier transform of f2(x, y), S1 the standard deviation of f1(x, y),

S2 the standard deviation of f2(x, y), and F−1 represents the inverse Fourier

transform. Substituting F1(kx, ky) = πI0e
−π2(k2x+k

2
y) and

F ∗2 (kx, ky) = πI0e
−100e

1
2
(i2πkx+10)2e

1
2
(i2πky+10)2 into this equation, one has

rx,y =
1

S1S2

∞∫
−∞

∞∫
−∞

[πI0e
−π2(k2x+k

2
y)][πI0e

−100e
1
2
(i2πkx+10)2e

1
2
(i2πky+10)2 ]ei2π(xkx+yky) dkx dky.

(106)

As in the 1-D diffused Gaussian feature case, one can simplify this expression by

completing squares for the powers of e. After some algebra, the expression above

becomes

rx,y =
π2I20
S1S2

e−
(x+10)2

3 e−
(y+10)2

3

∞∫
−∞

∞∫
−∞

e−3π
2[ky− i(y−10)

3π
]2e−3π

2[kx− i(x−10)
3π

]2 dkx dky. (107)
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Now, let λ = 3π2. Since
∞∫
−∞

e−λ(kx−c)
2

dkx =
√

π
λ

and
∞∫
−∞

e−λ(ky−c)
2

dky =
√

π
λ

for

any constant c, one has

∞∫
−∞

∞∫
−∞

e−3π
2[ky− i(y−10)

3π
]2e−3π

2[kx− i(x−10)
3π

]2 dkx dky = (

√
π

3π2
)(

√
π

3π2
) =

1

3π
(108)

and the cross-correlation function rx,y can be expressed as

rx,y =
π2I20
S1S2

e−
(x+10)2

3 e−
(y+10)2

3 (
1

3π
) (109)

or

rx,y =
πI20

3S1S2

e
−
[
(x+10)2+(y+10)2

3

]
. (110)

Finally, defining xlag = −x and ylag = −y for the lags, the cross-correlation function

rxlag ,ylag can be expressed as

rxlag ,ylag =
πI20

3S1S2

e
−
[
(−xlag+10)2+(−ylag+10)2

3

]
(111)

or

rxlag ,ylag =
πI20

3S1S2

e
−
[
(xlag−10)2+(ylag−10)2

3

]
, (112)

where I0 is the peak backscatter intensity of the given Gaussian feature, S1 is the

standard deviation of f1(x, y), and S2 is the standard deviation of f2(x, y).
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THE CROSS-CORRELATION FUNCTION
FOR A RECTANGULAR PULSE

Analytical Approaches Using
a Rectangular Pulse

Contour Integration

To calculate the cross-correlation function for a rectangular pulse, one needs to

evaluate the following integral.

I =

∞∫
0

sin (λx)

x
dx, (1)

where λ is a positive constant. To evaluate this integral, one can apply ”Calculus of

Residues” described by (Arfken and Weber, 2001) and (Mathews and Walker,

1970). Let I0 =
∮

eiλz

z
dz where z = x+ iy is a complex number, and take a contour

as shown as Figure 69. The contour of the integral I0 =
∮

eiλz

z
dz can be divided by

4 sections C1, C2, C3, and C4 in Figure 69.

I0 =

∮
eiλz

z
dz =

∫
C1

eiλz

z
dz +

∫
C2

eiλz

z
dz +

∫
C3

eiλz

z
dz +

∫
C4

eiλz

z
dz. (2)

From Figure 69, one can see that C1 is on the real axis. Then, z = x and

−R < x < −r, and one has

∫
C1

eiλz

z
dz =

∫ −r
−R

eiλx

x
dx. (3)

184
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For the path C2, let z = reiφ and dz = ireiφdφ, where φ changes from π to 0 and r

approaches 0. Then, one has

∫
C2

eiλz

z
dz =

∫ 0

π

eiλz

(reiφ)
(ireiφ dφ) (4)

 

x 
Re 

Im 

y 

O 

R 

r 

 

C1 

C4 

C3 

C2 

 

Figure 69. Contour integration of I0 =
∮
f(z) dz where f(z) = eiλz

z

and z = x+ iy is a complex number.
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or it is reduced to ∫
C2

eiλz

z
dz = i

∫ 0

π

eiλz dφ. (5)

In the case of r approaching 0, z = reiφ also approaches zero. Thus, eiλz = e0 = 1,

and one has ∫
C2

eiλz

z
dz = i

∫ 0

π

1 dφ = i(0− π) = −iπ. (6)

As the path C1, one can see that C3 is also on the real axis. Then, z = x and

r < x < R, and one has ∫
C3

eiλz

z
dz =

∫ R

r

eiλx

x
dx. (7)

The integral along the path C4 is zero, according to Jordan’s lemma as R

approaches infinity. ∫
C4

eiλz

z
dz = 0. (8)

Thus the contour integral along the given path becomes

I0 =

∮
eiλz

z
dz =

∫ −r
−R

eiλx

x
dx− iπ +

∫ R

r

eiλx

x
dx + 0. (9)

As r approaches 0 and R approaches infinity, the integral becomes

I0 =

∮
eiλz

z
dz =

∫ 0

−∞

eiλx

x
dx− iπ +

∫ ∞
0

eiλx

x
dx + 0, (10)

which is reduced to

I0 =

∮
eiλz

z
dz =

∫ ∞
−∞

eiλx

x
dx− iπ. (11)

From the Euler’s formula eiλx = cos (λx) + i sin (λx), so one can write

I0 =

∮
eiλz

z
dz =

∫ ∞
−∞

[cos (λx) + i sin (λx)]

x
dx− iπ (12)
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or separating real and imaginary parts gives

I0 =

∮
eiλz

z
dz =

∫ ∞
−∞

cos (λx)

x
dx + i

(∫ ∞
−∞

sin (λx)

x
dx− π

)
. (13)

Now, from the Residue Theorem, one has

∮
f(z) dz = 2πi

∑
(Residues). (14)

From Figure 69, one can see that no poles (singularities) are enclosed in the given

contour. Thus,
∑

(Residues) = 0, for the function f(z) = eiλz

z
and one has

I0 =

∮
eiλz

z
dz = 0. (15)

By comparing the real and the imaginary parts of two equations

I0 =

∮
eiλz

z
dz =

∫ ∞
−∞

cos (λx)

x
dx + i

(∫ ∞
−∞

sin (λx)

x
dx− π

)
(16)

and

I0 =

∮
eiλz

z
dz = 0 (17)

one can get ∫ ∞
−∞

cos (λx)

x
dx = 0 (18)

and ∫ ∞
−∞

sin (λx)

x
dx− π = 0 (19)

∫ ∞
−∞

sin (λx)

x
dx = π. (20)
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Now, both sin (λx) and x are odd functions, in which case the function sin (λx)
x

must

be an even function. Thus,

∫ ∞
0

sin (λx)

x
dx =

1

2

∫ ∞
−∞

sin (λx)

x
dx. (21)

That is,

I =

∫ ∞
0

sin (λx)

x
dx =

π

2
. (22)

This equation is helpful to evaluate the cross-correlation function for rectangular

pulses moving at constant velocity.

One-Dimensional Rectangular Pulse
in an Uniform Flow

Suppose that there is only 1 rectangular pulse in a 1-D space, and the center of the

rectangular pulse is at the origin, x = 0, at time t1. Then, the backscatter image at

time t1, f1(x), can be expressed as

f1(x) =

 I0 : −a
2
≤ x ≤ a

2

0 : otherwise

where I0 is the peak backscatter intensity of the rectangular pulse. Suppose further

that the rectangular pulse moves 10 units to the right in the time interval

∆t = t2 − t1. Then, the backscatter image at time t2, f2(x), can be expressed as

f2(x) =

 I0 : −a
2

+ 10 ≤ x ≤ a
2

+ 10

0 : otherwise

where I0 is the peak backscatter intensity of the rectangular pulse. Now, the 1-D

cross-correlation function, rx, applied to these images can be calculated as follows.
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The Fourier transform of f1(x), F1(k) is

F1(k) =

∞∫
−∞

f1(x)e−i2πkx dx (23)

F1(k) =

∫ a
2

−a
2

I0e
−i2πkx dx. (24)

To evaluate this integral, let

u = −i2πkx. (25)

Then

du = −i2πkdx (26)

or

− 1

i2πk
du = dx. (27)

Using these expressions, the given integral F1(k) =
∫ a

2

−a
2

I0e
−i2πkx dx becomes

F1(k) = I0

∫ x=a
2

x=−a
2

(eu)

(
− 1

i2πk

)
du (28)

F1(k) = − I0
i2πk

eu|x=
a
2

x=−a
2

(29)

or, back substituting u = −i2πkx, one has

F1(k) = − I0
i2πk

e−i2πkx
∣∣x=a

2

x=−a
2

(30)

F1(k) = − I0
i2πk

(
e−iaπk − eiaπk

)
(31)

F1(k) =

(
I0
πk

)(
eiaπk − e−iaπk

2i

)
. (32)
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Now, sin (aπk) = eiaπk−e−iaπk
2i

. Thus, F1(k) can be expressed as

F1(k) =

(
I0
πk

)
sin (aπk). (33)

Next, the Fourier transform of f2(x), F2(k) is

F2(k) =

∞∫
−∞

f2(x)e−i2πkx dx (34)

F2(k) =

∫ a
2
+10

−a
2
+10

I0e
−i2πkx dx. (35)

As the case of evaluating F1(k), let

u = −i2πkx (36)

and

− 1

i2πk
du = dx. (37)

Then, the given integral F2(k) =
∫ a

2
+10

−a
2
+10 I0e

−i2πkx dx becomes

F2(k) = I0

∫ x=a
2
+10

x=−a
2
+10

(eu)

(
− 1

i2πk

)
du (38)

F2(k) = − I0
i2πk

eu|x=
a
2
+10

x=−a
2
+10 (39)

or, back substituting u = −i2πkx, one has

F2(k) = − I0
i2πk

e−i2πkx
∣∣x=a

2
+10

x=−a
2
+10

(40)

F2(k) = − I0
i2πk

[e−i2πk(
a
2
+10) − e−i2πk(−

a
2
+10)] (41)
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which can be simplified as

F2(k) =

(
I0e
−i20πk

πk

)(
eiaπk − e−iaπk

2i

)
. (42)

Now, sin (aπk) = eiaπk−e−iaπk
2i

. Thus, F2(k) can be expressed as

F2(k) =

(
I0e
−i20πk

πk

)
sin (aπk). (43)

Now taking complex conjugate of F2(k) gives

F ∗2 (k) =

(
I0e

i20πk

πk

)
sin (aπk). (44)

The cross-correlation function rx is defined as

rx = F−1
[
F1(k)F ∗2 (k)

S1S2

]
(45)

or

rx =

∞∫
−∞

F1(k)F∗2(k)ei2πkx

S1S2

dk, (46)

where F1(k) is the Fourier transform of f1(x), F ∗2 (k) the complex conjugate of the

Fourier transform of f2(x), S1 the standard deviation of f1(x), S2 the standard

deviation of f2(x), and F−1 represents the inverse Fourier transform. Substituting

F1(k) = ( I0
πk

) sin (aπk) and F ∗2 (k) = ( I0e
i20πk

πk
) sin (aπk) into the expression of rx, one

has

rx =
1

S1S2

∞∫
−∞

(
I0
πk

)
sin (aπk)

(
I0e

i20πk

πk

)
sin (aπk)ei2πkx dk (47)
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or it is reduced to

rx =

(
I20

π2S1S2

) ∞∫
−∞

ei2π(x+10)k sin2 (aπk)

k2
dk. (48)

Using the Euler’s formula, ei2π(x+10)k = cos [2π(x+ 10)k] + i sin [2π(x+ 10)k], one

has

rx =

(
I20

π2S1S2

) ∞∫
−∞

(cos [2π(x + 10)k] + i sin [2π(x + 10)k]) sin2 (aπk)

k2
dk (49)

rx =

(
I20

π2S1S2

) ∞∫
−∞

cos [2π(x + 10)k] sin2 (aπk)

k2
dk + i

(
I20

π2S1S2

) ∞∫
−∞

sin [2π(x + 10)k] sin2 (aπk)

k2
dk. (50)

Now, sin [2π(x+10)k] sin2 (aπk)
k2

is an odd function. Then,

∞∫
−∞

sin [2π(x + 10)k] sin2 (aπk)

k2
dk = 0. (51)

On the other hand, cos [2π(x+10)k] sin2 (aπk)
k2

is an even function. Thus, one has

∞∫
−∞

cos [2π(x + 10)k] sin2 (aπk)

k2
dk = 2

∞∫
0

cos [2π(x + 10)k] sin2 (aπk)

k2
dk. (52)

Using these expressions, the cross-correlation function rx can be expressed as

rx = 2

(
I20

π2S1S2

) ∞∫
0

cos [2π(x + 10)k] sin2 (aπk)

k2
dk. (53)
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To evaluate this integral, let α = aπ and β = π(x+ 10). Then, one has

rx = 2

(
I20

π2S1S2

) ∞∫
0

cos (2βk) sin2 (αk)

k2
dk. (54)

Next, applying the trigonometric identity, sin2 (αk) = 1
2
[1− cos (2αk)], one has

rx = 2

(
I20

π2S1S2

) ∞∫
0

cos (2βk)1
2
[1− cos (2αk)]

k2
dk (55)

which is,

rx =

(
I20

π2S1S2

) ∞∫
0

cos (2βk)− cos (2βk) cos (2αk)

k2
dk (56)

or

rx =

(
I20

π2S1S2

) ∞∫
0

cos (2βk)− cos (2αk) cos (2βk)

k2
dk. (57)

Now, the term cos (2αk) cos (2βk) can be expressed as

cos (2αk) cos (2βk) =
1

2
cos [2(α− β)k] +

1

2
cos [2(α + β)k]. (58)

Using this expression, the cross-correlation function rx can be expressed as

rx =

(
I20

π2S1S2

) ∞∫
0

cos (2βk)− {1
2

cos [2(α− β)k] + 1
2

cos [2(α + β)k]}
k2

dk (59)

rx =

(
I20

π2S1S2

) ∞∫
0

cos (2βk)− 1
2

cos [2(α− β)k]− 1
2

cos [2(α + β)k]

k2
dk. (60)

Next, let

u = cos (2βk)− 1

2
cos [2(α− β)k]− 1

2
cos [2(α + β)k] (61)
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du = {−2β sin (2βk) + (α− β) sin [2(α− β)k] + (α + β) sin [2(α + β)k]}dk (62)

dv =
1

k2
dk (63)

and

v = −1

k
. (64)

Then, the cross-correlation rx can be expressed as

rx =

(
I20

π2S1S2

) k→∞∫
k=0

u dv. (65)

Now, the Integration by Parts gives

rx =

(
I20

π2S1S2

) uv|k→∞k=0 −
k→∞∫
k=0

v du

 (66)

rx =

(
I20

π2S1S2

)
[
−
cos (2βk)− 1

2
cos [2(α− β)k]− 1

2
cos [2(α+ β)k]

k

]∣∣∣∣∣
k→∞

k=0

−
k→∞∫
k=0

v du

 . (67)

By applying the L’ Hopital’s rule, the term,[
− cos (2βk)− 1

2
cos [2(α−β)k]− 1

2
cos [2(α+β)k]

k

]∣∣∣k→∞
k=0

= 0. Thus one has

rx =

(
I20

π2S1S2

)0−
k→∞∫
k=0

v du

 (68)

rx = −
(

I20
π2S1S2

) ∞∫
0

(
−
1

k

)
{−2β sin (2βk) + (α− β) sin [2(α− β)k] + (α+ β) sin [2(α+ β)k]} dk (69)

rx =

(
I20

π2S1S2

) ∞∫
0

{−2β sin (2βk) + (α− β) sin [2(α− β)k] + (α+ β) sin [2(α+ β)k]}
k

dk (70)

rx =

(
I20

π2S1S2

)−2β
∞∫
0

sin (2βk)

k
dk + (α− β)

∞∫
0

sin [2(α− β)k]
k

dk + (α+ β)

∞∫
0

sin [2(α+ β)k]

k
dk

 . (71)
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From the previous section, one found that

∫ ∞
0

sin (λx)

x
dx =

π

2
, (72)

where λ is a positive constant. Then, one has

∞∫
0

sin (2βk)

k
dk =

π

2
(73)

∞∫
0

sin [2(α− β)k]

k
dk =

π

2
(74)

and ∞∫
0

sin [2(α + β)k]

k
dk =

π

2
, (75)

where β > 0, α− β > 0 and α + β > 0. Using these expressions, the

cross-correlation function rx can be expressed as

rx =

(
I20

π2S1S2

)[
−2β(

π

2
) + (α− β)(

π

2
) + (α + β)(

π

2
)
]

(76)

rx =

(
I20

π2S1S2

)[
π(−β +

(α− β)

2
+

(α + β)

2

]
(77)

which is reduced to

rx =

(
I20

πS1S2

)
(α− β). (78)

For x > −10, β = π(x+ 10) and α = aπ. Thus the cross-correlation function rx

becomes

rx =

(
I20

πS1S2

)
[aπ − π(x+ 10)] (79)
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rx =

(
I20
S1S2

)
(a− x− 10). (80)

As Gaussian features cases as shown in Appendix A, let xlag = −x. Then the

cross-correlation function rxlag becomes

rxlag =

(
I20
S1S2

)
(a+ xlag − 10). (81)

That is

rxlag =

(
I20
S1S2

)
a+

(
I20
S1S2

)
(xlag − 10). (82)

This expression is valid when x > −10, that is xlag < 10. Since, rx = 0 when

xlag = 10− a, the range of xlag must be 10− a < xlag < 10. For x < −10,

β = −π(x+ 10) and α = aπ. Thus the cross-correlation function rx becomes

rx =

(
I20

πS1S2

)
{aπ − [−π(x+ 10)]} (83)

rx =

(
I20
S1S2

)
(a+ x+ 10). (84)

Let xlag = −x. Then the cross-correlation function rxlag becomes

rxlag =

(
I20
S1S2

)
(a− xlag + 10). (85)

That is

rxlag =

(
I20
S1S2

)
a−

(
I20
S1S2

)
(xlag − 10). (86)

This expression is valid when x < −10, that is xlag > 10. Since, rxlag = 0 when

xlag = 10 + a, the range of xlag must be 10 < xlag < 10 + a. Finally, one combines



197

these results and the cross-correlation function rxlag can be expressed as

rxlag =


(

I20
S1S2

)
a+

(
I20
S1S2

)
(xlag − 10) : 10− a ≤ xlag ≤ 10(

I20
S1S2

)
a−

(
I20
S1S2

)
(xlag − 10) : 10 ≤ xlag ≤ 10 + a

where I0 is the peak backscatter intensity of the given rectangular pulse, a is the

width of the rectangular pulse, S1 is the standard deviation of f1(x), and S2 is the

standard deviation of f2(x).

Two-Dimensional Rectangular Pulse
in an Uniform Flow

One can extend the concepts of the 1-D case, described above, to consider the 2-D

case. Suppose that there is only 1 rectangular pulse in a 2-D space, and the center

of the rectangular pulse is at the origin, (x, y) = (0, 0), at time t1. Then, the

backscatter image at time t1, f1(x, y), can be expressed as

f1(x, y) =

 I0 : −a
2
≤ x ≤ a

2
: − b

2
≤ y ≤ b

2

0 : otherwise

where I0 is the peak backscatter image of the rectangular pulse. Suppose further

that the rectangular pulse moves 10 units to the right (positive x direction) and 10

units to the upward (positive y direction) in the time interval ∆t = t2 − t1. Then,

the backscatter image at time t2, f2(x, y), can be expressed as

f2(x, y) =

 I0 : 10− a
2
≤ x ≤ 10 + a

2
: 10− b

2
≤ y ≤ 10 + b

2

0 : otherwise

where I0 is the peak backscatter intensity of the rectangular pulse. Now, the

2-dimensional cross-correlation function, rx,y, applied to these images can be
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calculated as follows. The Fourier transform of f1(x, y), F1(kx, ky) is

F1(kx, ky) =

∞∫
−∞

∞∫
−∞

f1(x, y)e−i2π(kxx+kyy) dx dy (87)

F1(kx, ky) =

b
2∫

− b
2

a
2∫

−a
2

I0e
−i2π(kxx+kyy) dx dy (88)

F1(kx, ky) = I0

b
2∫

− b
2

a
2∫

−a
2

e−i2πkxxe−i2πkyy dx dy. (89)

To evaluate this integral, let

u = −i2πkxx (90)

and

− 1

i2πkx
du = dx. (91)

One can evaluate the x-integral by this substitution and the Euler’s formula, as

discussed in the previous section. Then, F1(kx, ky) becomes

F1(kx, ky) =
I0
πkx

sin (aπkx)

∫ b
2

− b
2

e−i2πkyy dy. (92)

Similarly, let

u = −i2πkyy (93)

and

− 1

i2πky
du = dy. (94)
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One can evaluate the y-integral by this substitution and the Euler’s formula, as the

x-integral. Then, F1(kx, ky) can be expressed as

F1(kx, ky) =
I0

π2kxky
sin (aπkx) sin (bπky). (95)

Next, one can find the Fourier transform of f2(x, y), F2(kx, ky), similar to the way

for finding F1(kx, ky). The Fourier transform of f2(x, y), F2(kx, ky) is

F2(kx, ky) =

∞∫
−∞

∞∫
−∞

f2(x, y)e−i2π(kxx+kyy) dx dy (96)

F2(kx, ky) =

10+ b
2∫

10− b
2

10+a
2∫

10−a
2

I0e
−i2π(kxx+kyy) dx dy (97)

F2(kx, ky) = I0

10+ b
2∫

10− b
2

10+a
2∫

10−a
2

e−i2πkxxe−i2πkyy dx dy. (98)

To evaluate this integral, let

u = −i2πkxx (99)

and

− 1

i2πkx
du = dx. (100)

One can evaluate the x-integral by this substitution and the Euler’s formula, as

discussed in the previous section. Then, F2(kx, ky) becomes

F2(kx, ky) =
I0e
−i20πkx

πkx
sin (aπkx)

∫ b
2

− b
2

e−i2πkyy dy. (101)
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Similarly, let

u = −i2πkyy (102)

and

− 1

i2πky
du = dy. (103)

One can evaluate the y-integral by this substitution and the Euler’s formula, as the

x-integral. Then, F2(kx, ky) can be expressed as

F2(kx, ky) =
I0e
−i20π(kx+ky)

π2kxky
sin (aπkx) sin (bπky). (104)

Now taking complex conjugate of F2(kx, ky) gives

F ∗2 (kx, ky) =
I0e

i20π(kx+ky)

π2kxky
sin (aπkx) sin (bπky). (105)

The cross-correlation function rx,y is defined as

rx,y = F−1
[
F1(kx, ky)F

∗
2 (kx, ky)

S1S2

]
(106)

or

rx,y =

∞∫
−∞

∞∫
−∞

F1(kx, ky)F
∗
2 (kx, ky)e

i2π(xkx+yky) dkx dky
S1S2

, (107)

where F1(kx, ky) is the Fourier transform of f1(x, y), F ∗2 (kx, ky) the complex

conjugate of the Fourier transform of f2(x, y), S1 the standard deviation of f1(x, y),

S2 the standard deviation of f2(x, y), and F−1 represents the inverse Fourier

transform. Substituting F1(kx, ky) = I0
π2kxky

sin (aπkx) sin (bπky) and

F ∗2 (kx, ky) = I0e
i20π(kx+ky)

π2kxky
sin (aπkx) sin (bπky) into this equation, one has
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rx,y =
1

S1S2

∞∫
−∞

∞∫
−∞

[
I0

π2kxky

]
sin (aπkx) sin (bπky)

[
I0ei20π(kx+ky)

π2kxky

]
sin (aπkx) sin (bπky)e

i2π(xkx+yky) dkx dky

(108)

which can be reduced to

rx,y =
I20

π4S1S2

∞∫
−∞

∞∫
−∞

[
ei2π(x+10)kx sin2 (aπkx)

k2x

] [
ei2π(y+10)ky sin2 (bπky)

k2y

]
dkx dky.

(109)

To evaluate this integral, let α = aπ, β = π(x+ 10), γ = bπ, and δ = π(y + 10)

Then, one has

rx,y =
I20

π4S1S2

∞∫
−∞

∞∫
−∞

[
ei2βkx sin2 (αkx)

k2x

] [
ei2δky sin2 (γky)

k2y

]
dkx dky. (110)

As described in the previous section, we use the Euler’s formula, some

trigonometric identities, and contour integration of I =
∞∫
0

sin (λx)
x

dx, where λ is a

positive constant. Then, one has

∞∫
−∞

ei2βkx sin2 (αkx)

k2
x

dkx = π(α− β) (111)

and ∞∫
−∞

ei2δky sin2 (γky)

k2
y

dky = π(γ − δ), (112)

where β > 0, α− β > 0, δ > 0 and γ − δ > 0. Using these expressions, the

cross-correlation function rx,y becomes

rx,y =

[
I20

π4S1S2

]
π(α− β)π(γ − δ) (113)
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rx,y =

[
I20

π2S1S2

]
(α− β)(γ − δ), (114)

where α = aπ, β = π(x+ 10), γ = bπ, and δ = π(y + 10). Finally, defining

xlag = −x, ylag = −y, and imposing the conditions β > 0, α− β > 0, δ > 0 and

γ − δ > 0, the cross-correlation function rxlag ,ylag , for the 2-D rectangular pulse, can

be expressed as

rxlag,ylag =



(
I20
S1S2

)
[a+ (xlag − 10)][b+ (ylag − 10)] : 10− a ≤ xlag ≤ 10 : 10− b ≤ ylag ≤ 10(

I20
S1S2

)
[a− (xlag − 10)][b− (ylag − 10)] : 10 ≤ xlag ≤ 10 + a : 10 ≤ ylag ≤ 10 + b(

I20
S1S2

)
[a+ (xlag − 10)][b− (ylag − 10)] : 10− a ≤ xlag ≤ 10 : 10 ≤ ylag ≤ 10 + b(

I20
S1S2

)
[a− (xlag − 10)][b+ (ylag − 10)] : 10 ≤ xlag ≤ 10 + a : 10− b ≤ ylag ≤ 10

where I0 is the peak backscatter intensity of the given rectangular pulse, a is the

width of the rectangular pulse, b is the height of the rectangular pulse, S1 is the

standard deviation of f1(x, y), and S2 is the standard deviation of f2(x, y).




