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ABSTRACT

EVALUATIONS OF THE PERFORMANCE OF A CROSS-CORRELATION
ALGORITHM FOR WIND VELOCITY ESTIMATION USING
SYNTHETIC BACKSCATTER LIDAR IMAGES
AND VELOCITY FIELDS
by
(© Masaki Hamada 2014
Master of Science in Environmental Science
California State University, Chico

Summer 2014

The performance of a cross-correlation algorithm for remote wind
velocity estimation by atmospheric lidar is evaluated by using synthetic aerosol
backscatter images and synthetic wind velocity fields. The results of applying the
cross-correlation algorithm to these synthetic images and flow fields were compared
to the mean velocities of the synthetic flow fields. To mimic the atmospheric
backscatter, a gently varying aerosol background was generated from smoothed
random noise and the superposition of Gaussian puffs. Two-component vector flow
fields with spatial variability were generated by analytic formulations for various
flows such as convergence, divergence, rotation, and shear. Small scale turbulent
perturbations were generated by use of a spectral tensor model of atmospheric
surface layer turbulence. The pixels of synthetic backscatter from the first image
were displaced by the corresponding vectors of the synthetic flow fields and a

second image was generated by bicubic interpolation.



The cross-correlation algorithm results in one displacement vector that
maximizes the correlation of two consecutive backscatter images. The results show
that the cross-correlation algorithm produces perfect displacement vectors only
when the velocity field is perfectly uniform and no aerosol features enter or leave
the interrogation window between consecutive frames. Any spatial variation in the
velocity field may result in an error and the magnitude of the error increases as the
non-uniformity of the flow field increases.

The results show that the magnitudes of the resultant displacement
vectors tend to be slightly lower than the actual ones from the given velocity fields.
There are two possible causes of underestimation. The first is likely attributed to
the non-uniformity of the velocity field within the interrogation window. In this
case, aerosol features with lower velocity tend to appear in both frames, while those
with higher velocity tend to move out of the interrogation window. Reducing the
size of the interrogation window may reduce this error. The second is likely
attributed to aerosol features cut by the image edges. In this case, a larger
interrogation window is permissible if the edges of the images are tapered. The
results also show that both the area and the intensity of aerosol features influence
the performance of the cross-correlation algorithm. This observation can be
reduced by applying histogram equalization. However, the hisogram equalization
tends to broaden the cross-correlation function and increases the ambiguity of the
peak location.

According to this study, the performance of the cross-correlation
algorithm is maximized by: (1) using zero-padded images, (2) tapering the image
edges, (3) applying a multi-pass approach, and (4) fitting curves to the
cross-correlation function peak for subpixel resolution of the displacement vector.

For experiments with 100 pairs of synthetic backscatter images applied to synthetic
xiii



velocity fields of relatively low turbulent intensities, the cross-correlation algorithm
results agree with the actual mean velocity within 2% with these options. However,

the underestimation of the displacement vector cannot be completely eliminated.
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CHAPTER I

INTRODUCTION

In this chapter, the importance of wind measurements is briefly discussed
and several techniques to measure the wind velocity are shown. These techniques
are classified into two types, in situ (in position), that is the measurement based on
direct contact, and remote sensing. The cup anemometer and the sonic
anemometer are two examples of instruments for in situ measurement of the wind.
On the other hand, the Doppler lidar and the aerosol lidar are two examples of
instruments for remote sensing of the wind. Both the Doppler lidar and the aerosol
lidar can be used to estimate horizontal wind velocity vectors. From these two
types of lidar, this thesis focuses on the use of the cross-correlation algorithm to
estimate the wind field from aerosol lidars. A review of literature in this chapter
lists examples of the cross-correlation algorithm previously applied to estimate the
wind velocity. Finally, a statement of problems and hypothesis associated with the

cross-correlation algorithm are described at the end of this chapter.

Importance of Wind Measurements
Wind is created by horizontal atmospheric pressure gradients,® but
landscape, vegetation, and terrestrial features such as houses and buildings strongly
influence the wind velocity near the surface of the Earth. In general, surface

vegetation, features, and terrain reduce the wind velocity at the surface because of

LA physical quantity that describes which direction and at what rate the pressure
changes around a particular location.



the frictional force they exert on the flow (Stull, 1988). On the other hand, when
the wind is blown over a ridge that lies transverse to the wind flow, the air streams
may be squeezed and accelerated, which results in higher wind velocity on elevated
hilltops. Similarly, convection may influence the mean wind velocity near the
surface.

Wind is a renewable energy resource, and the measurement of the wind
velocity is crucial to assess wind energy potential in a given region. The power
available from the wind is proportional to the density of the air, the area of the
turbine rotor disk, and the cube of the wind speed. The wind power P is expressed
as

1
P = §C,0Av3, (1)

where C is the power coefficient, p the density of the air, A the area of the turbine
rotor disk, and v the wind speed (Burton et al., 2011). These factors encourage
industry to develop larger wind turbines at higher altitudes (where the frictional
effect of the surface is reduced and the average wind speed higher) and with larger
diameter rotors. Modern wind turbines, capable of producing 5 MW of electrical
power, have hubs typically at 100 m above the surface, and with rotor diameters
approaching 100 m.

The ocean is relatively flat compared to land, so the frictional effects of
the ocean surface on the wind are relatively small and the wind speeds are
generally larger over the ocean than over the land. Significant interest exists in
installing wind farms (arrays of wind turbines) offshore. However, offshore wind
farm developers must demonstrate that adequate wind resources exist in order to
acquire the financing needed. Observations of the wind over long periods are a

component of wind resource assessment (Bailey et al., 2012).



In addition to holding value for use in wind resource assessment, lidar
observation of the wind field is likely to have value in very short-term prediction of
the wind. Forecasts of the wind, up to a few minutes in advance, could be used to
optimize the production of wind energy and protect turbines from damage. Finally,
in addition to the above applications in wind energy, remote wind measurements
may be of value in a variety of other fields. Those include transportation
(especially aviation safety near airports); wildfire suppression; prediction of

atmospheric pollution dispersion; and meteorological research.

Methods to Measure the Wind

Anemometer

An anemometer is a device used to measure the wind speed. The first
anemometer was a swinging-plate instrument described and illustrated by Leon
Battista Alberti in 1450 and the shape and structure of the anemometer has
evolved to measure the wind speed accurately (Middleton, 1969). Among several
types of anemometers, two types, a cup anemometer and a sonic anemometer, are
often used to measure the wind speed today. A cup anemometer consists of
hemispherical cups mounted on the ends of horizontal arms mounted at equal
angles to each other on a vertical shaft, as shown in Figure 1la. When the wind
blows from any horizontal direction, torque is produced, and the vertical shaft
turns. For this device, the wind velocity is proportional to the angular speed of the
shaft. Thus, one can measure the average wind speed by counting the number of
turns of the shaft over a given time period. Some advantages of this measurement
are low cost and generally good accuracy (Bailey et al., 2012).

Sonic anemometers use ultrasonic pulses to measure the wind velocity.

Figure 1b represents the sonic anemometer. When an ultrasonic pulse is emitted



from a transducer, it travels to another transducer. The time required for a given
pulse to travel across a pair of transducers depends on the wind velocity. For
example, if the wind blows in the opposite direction of the pulse’s velocity, it takes
longer time than in the absence of wind. The wind velocity can be measured by the
combination of measurements of the time to travel between pairs of transducers.
The advantage of this measurement is that sonic anemometers are “fast response”
and therefore can measure turbulent fluctuations of the wind velocity which is
common in the planetary boundary layer.?

The wind measurement using three cup anemometers, as shown in
Figure 1a, is the most popular method, and is currently used as the industry
standard for wind resource assessment studies (Bailey et al., 1997). However, cup
or sonic anemometers give only the wind speed at a specific point in space.
Moreover, this measurement requires a stationary platform such as a tower. It is
very difficult to erect towers over the ocean, so in situ measurement is challenging

to deploy for offshore winds.

2The bottom layer of the troposphere that is in contact with the surface, and responds
rapidly to the surface.



(a) Cup anemometer.

(b) Sonic anemometer (CSAT3).

Figure 1. (a) An image of a cup anemometer (Met-One speed sen-
sor). The wind speed is measured by the rate of rotation of cups. (b)
An image of a sonic anemometer (CSAT3: three-dimensional sonic
anemometer). The wind velocity can be measured by the combi-
nation of measurements of time of travel of ultra sonic pulses from
pairs of transducers. Source: Images from Campbell Scientific, Inc.:
http://www.campbellsci.com/.



Lidar

Lidar is an acronym for LIght Detection And Ranging. Lidar is an active
remote sensing technology that illuminates distant targets with radiation, and is
similar in principle to radar (RAdio Detection And Ranging). The main difference
is that lidar uses electromagnetic radiation of wavelength (200 nm - 10 gum) and is
much shorter than that of radar (1 mm - 10 cm). Since shorter wavelengths of
radiation allow the detection of smaller scatterers in the atmosphere, lidar systems
are more suitable for observing the clear atmosphere than radar systems.
Therefore, lidars can be used to measure the wind velocity via the scattering of
aerosol particles.® This measurement is attractive for offshore winds since it may be
possible to measure the offshore wind velocity remotely from the coast. Figure 2 is
an artist’s rendition of a lidar system scanning from the coast.

Atmospheric lidars that are capable of observing the wind can be divided
into three broad classes (Baker and Coauthors, 2013). First, coherent Doppler
lidars employ heterodyne detection to measure the frequency shift of the
backscattered radiation (Grund et al., 2001, Henderson et al., 1991, Pearson et al.,
2009, Post and Cupp, 1990). Second, direct detection Doppler lidars employ various
types of interferometers to measure the frequency shift of the backscattered
radiation (Gentry et al., 2000, Gentry and Korb, 1994, Grund and Tucker, 2011,
McGill et al., 1997). The third method to measure the wind is by the use of motion
estimation algorithms applied to the images produced by direct detection
non-Doppler lidars (Eloranta et al., 1975, Kolev et al., 1988, Shimizu et al., 1981).
Because coherent detection Doppler lidars are commercially available and most

commonly used in lower atmospheric wind sensing, the next section describes how

3Colloid of fine solid particles or liquid droplets suspended in a fluid.



coherent Doppler lidars are used to observe vertical profiles of two-component

horizontal wind vectors.

e i ST T g._:%—f‘*

LIDAR System

Figure 2. An artist’s rendition of a lidar system scanning from the
coast. Note the square block on the scan sector. This square block
represents an example of an “interrogation window” used by the
cross-correlation algorithm.

Doppler Lidar versus Motion Estimation
by Aerosol Lidar

Doppler Lidar

Doppler lidar is a remote sensing technology used to measure the wind
velocity. Figure 3 shows an artist’s rendition of a commercially available compact
Doppler lidar. A Doppler lidar emits pulses of electromagnetic radiation into the
atmosphere and measures the radial (or line-of-sight) component of the wind
velocity via the Doppler shift of frequency of backscattered radiation by the motion
of aerosol particles. When the frequency of the backscattered radiation is higher

than that of the transmitted radiation, the aerosol particles are approaching the



Doppler lidar. On the other hand, when the frequency of the backscattered
radiation is lower than that of the transmitted radiation, the aerosol particles are
moving away from the Doppler lidar. To obtain the distance between the Doppler
lidar and the pulse volume as it travels, the time between emitting and receiving
radiation is measured. From the Doppler shift of the backscattered radiation, the
distance between the Doppler lidar and aerosol particles, and the fact that aerosol
particles move with the wind, the radial component of the wind velocity (either

approaching or receding), at remote locations, can be estimated.

Figure 3. An artist’s rendition of a commercially available, com-
pact, heterodyne Doppler lidar, and a single pulse at an instant in
time. The pulse propagates through the atmosphere at the speed of
light.

To estimate the horizontal wind velocity vector using a Doppler lidar, a

conic scan and curve fitting must be used. The velocity azimuth display (VAD)



method results in a vertical profile of horizontal wind vectors above the Doppler
lidar (K&pp et al., 1984). It is a “profiling” method. Figure 4 shows a special case
of VAD scans. The x-, y-, and z-directions are defined as eastward, northward, and
upward, respectively. Here, the wind velocity is in the positive x-direction
(eastward), and a Doppler lidar scans from the azimuthal angle ¢ = 0 to ¢ = 27
while the the polar angle 6 is held constant. In this case, the Doppler lidar scans
the atmosphere in the shape of a cone. At point A, the radial component of the
wind velocity is positive and maximum, then it decreases to zero (at point B),
minimum (at point C), and increases to zero (at point D), and returns to the
maximum value (at point A). Figure 5 shows the radial component of the wind
velocity v, versus the azimuthal angle ¢ for this special case of VAD scans which
demonstrates that v, changes sinusoidally as ¢ increases. In this special case, the
plot is the cosine function when the phase angle equals zero. If the wind has both
the north and east components, the phase angle becomes a non-zero value. Doppler
lidar has been used to measure wind profiles, and experimentally validated (Mann
et al., 2010, Sathe and Mann, 2012, Sathe et al., 2011). The advantages of this
measurement are the ability to measure the wind velocity remotely, and the high
reliability of the technique (Reitebuch et al., 2001). The disadvantages of this
measurement are that the method assumes that the wind velocity is uniform
throughout the region swept by the Doppler lidar, and that it takes time to sweep
out the cone. Also, the method is not always accurate when the wind velocity is
not uniform in the region inside of the cone or changes in the time interval for one
complete cycle of the VAD scan. It is possible to scan a Doppler lidar horizontally
as in Figure 2, and obtain radial velocity fields, but the full description of the wind

velocity field is not possible from a single Doppler lidar. According to Newsom



10
et al. (2005), dual-Doppler is possible, but using two Doppler lidars increases the

cost and complexity.

West East

Doppler Lidar

Figure 4. The Doppler lidar system used to measure 2-components
of wind velocity (VAD scans).
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Figure 5. The radial component of the wind velocity v, versus the
azimuthal angle ¢ for VAD scan of Doppler lidar.

Motion Estimation by Aerosol Lidar

Aerosol lidar is another remote sensing technology that may be used to
measure the wind velocity. Figure 6 represents the aerosol lidar, the REAL, which
stands for Raman-shifted Eye-safe Aerosol Lidar. REAL is an elastic backscatter
lidar operating at 1.54-um wavelength of radiation (Mayor and Spuler, 2004, Mayor
et al., 2007, Spuler and Mayor, 2005, 2007). Similar to the Doppler lidar, this lidar
system emits pulses of electromagnetic radiation into the atmosphere, and collects
the backscattered radiation by aerosols. However, this lidar system measures the
wind velocity by applying motion estimation algorithms to consecutive pairs of
backscatter images (Mayor et al., 2012). The advantage of this approach is the

ability to obtain two components of the wind velocity over an area from a single
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lidar system. The following sections describe how to measure the wind using this

lidar system.

,‘?’Aé’rosbls
Lidar System \

[ ¥ 2

Figure 6. An artist’s rendition of the Raman-Shifted Eye-Safe
Aerosol Lidar (REAL) at an instant in time after a laser pulse is
transmitted into the atmosphere.

Backscatter Lidar Images

The lidar system observes the atmosphere as follows. First, the lidar
system emits short pulses of radiation into the atmosphere. For example, the lidar
system described by Mayor et al. (2007) emits a 170-mJ pulse of 6-ns pulse
duration every 0.1 s. Next, the pulse of radiation is scattered in all directions by
aerosol particles, a colloidal systems of solid or liquid particles suspended in the
atmosphere, as the pulse traverses the atmosphere. (The size of an aerosol particle
ranges approximately from 0.1 gm to 100 pm.) As the pulse propagates through
the atmosphere, a small portion of the radiation is scattered back to the lidar
system and focused on to a photodetector. Backscattered radiation focused on the
photodetector is converted to an electrical current by the photodetector and
amplified by a transimpedance amplifier. The resulting analog signal is converted

to a digital signal by a high-speed digitizer.
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The scanner (or beam steering unit) directs subsequent pulses in other
azimuth or elevation angles. Finally, from the collection of returns at different look
angles, an image of backscatter intensities due to aerosols may be created. Since
each aerosol particle is small compared to the pulse volume, the lidar cannot
distinguish individual aerosol particles. However, it can measure what is a proxy to
relative aerosol concentration via backscatter intensities and detect significant
macroscopic aerosol features in the images.

In practice the REAL lidar backscatter signal intensity data is converted
to relative aerosol backscatter intensity by multiplying each element of returned
waveform by the range squared. In addition, the range-corrected relative
backscatter intensity is expressed in decibels (dB). Finally, high-pass median
filtering is applied to remove large-scale features that are not likely to be advected
by the local wind. These features, for example, include attenuation, instrumental
artifacts, and large meteorological features such as mesoscale fronts.

There are two types of lidar scans, plan position indicator (PPI) and
range height indicator (RHI). Let 6 stand for the polar angle (angle from the
vertical z-axis) and ¢ for the azimuthal angle. Then, the PPI scan sweeps in the
direction of increasing ¢ while € is held constant, as shown in Figure 7a. Then one
interpolates the polar data to a Cartesian grid to simplify image processing and
motion estimation. The result is that one obtains the horizontal cross-section of the
atmosphere, as shown in Figure 7b. When the RHI scan sweeps in the direction of
increasing € while ¢ is held constant, a vertical cross-section of the atmosphere is
obtained, as shown in Figure 8b. This image shows the planetary boundary layer is
about 800 m deep. Thus, the lidar system can be used to observe the atmosphere

in two dimensions via backscattered radiation by aerosols.
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(a) The Plan Position Indicator (PPI) scan by the REAL.

Start: 16:53:19 UTC Elevation: 3.99°
PPI Scan 1 (Filtered) 15 Sep 2013
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(b) An example of PPI scan lidar image.

Figure 7. Plan Position Indicator (PPI) scan.
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(a) The Range Height Indicator (RHI) scan by the REAL.

Start: 21:43:52 UTC Azimuth: 15.01°
RHI Scan 1 (Non-Filtered) 16 Sep 2013
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(b) An example of RHI scan lidar image.

Figure 8. Range Height Indicator (RHI) scan.
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Wind Velocity Estimation
The wind velocity is estimated by using two consecutive backscatter
lidar images. The primary assumption is that aerosol features are advected by the
wind. In this case, the wind velocity in a particular square region, called a block,
should be approximately equal to the velocity of the aerosol features in the region.
To find the velocity of aerosol features from lidar backscatter images, two
consecutive images are taken to find the displacement of the aerosol features Ar.
Then, the velocity v of the aerosol features can be calculated by

AT
Ea (2)

U=

where At is the time between two consecutive lidar scans. At depends on how fast
the lidar system scans the atmosphere, but for the REAL it is about 15 s for a 60°
sector scan. The lidar system’s scan speed At is constant. However, it is
challenging to get displacement A7 between the two consecutive images since
aerosol features tend to diffuse and change shape and brightness as they move.
Figure 9 shows two real lidar backscatter images separated by At = 51 s.
One can see that aerosol features have moved to the south and it is the job of the
motion estimation algorithm to estimate the displacement of these features in the
time interval At between the scans. In this case, motion estimation methods may
be applied to derive the displacement A7 and one motion estimation algorithm is

the cross-correlation algorithm (Eloranta et al., 1975, Mayor et al., 2012).



Start: 06:04:30 UTC Elevation: 2.20°
PPI Scan 1 (Filtered) 5 Jul 2013
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(a) Lidar backscatter image at ¢;.

Start: 06:05:21 UTC Elevation: 2.20°
PPI Scan 1 (Filtered) 5 Jul 2013
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(b) Lidar backscatter image at to.
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Figure 9. Two lidar backscatter images separated
by the time interval At = t; —¢t; = 51 s. They
were collected at the California State University,

Chico, University Farm.
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Cross-Correlation
The cross-correlation function provides a measure of the similarity of two
waveforms as a function of lag* applied to one of the waveforms. The normalized

cross-correlation function, r,, for two waveforms f; and f5 is defined as

__Con,
T — 5152 )

(3)

where COV/ 5 is the covariance of the overlapped portions of f; and fs, S; is the
standard deviation of f;, and Sy is the standard deviation of fy (Davis and
Sampson, 2002). Figures 10a and 10b show an example of 1-dimensional (1-D)
waveforms f; and fs respectively, and Figure 11 shows the resulting
cross-correlation function, r,,, , applied to these waveforms, and plotted as a
function of ., = —x. From Figure 11, the cross-correlation T, 1S MAXIMUIN when
the lag, ;.4 = 8. In this case, the overlapping portions of two waveforms are most
similar when the second waveform is shifted 8 units with respect to the first. If the
second waveform were moved with respect to the first, the lag, x;,, = 8, represents
the displacement of the second waveform that maximizes the correlation of the two
waveforms. Thus, cross-correlation can be used to estimate the displacement of the
second waveform, and this principle can be applied to estimate the displacement of
aerosol features in the time interval At between the two consecutive backscatter

images.

4The negative of a given coordinate. For example, Tlgg = —1.
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(a) Arbitrary 1-D waveform at time ¢;.
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(b) Arbitrary 1-D waveform at time ts.

Figure 10. An example of 1-D waveforms. At time ¢;, the waveform
is expressed as fi(x). The waveform changes in the time interval
At =ty — t1. At time ty, the waveform is expressed as fo(z).
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Figure 11. The cross-correlation function for the 1-D waveforms
shown in Figure 10. The peak location of the cross-correlation func-
tion r,,,, represents the displacement of the waveform fi(x) that
maximizes the correlation of the two waveforms fi(z) and fy(x).

Cross-Correlation Algorithm
The cross-correlation algorithm is a numerical procedure to determine
the displacement of features between two consecutive frames. The displacement is
determined by finding the location of the peak of the cross-correlation function
(Eloranta et al., 1975). For continuous functions f(z) and f(x), the

cross-correlation function, r,, is defined as

Ty = / £ (x)fa(x — X1ag) dx, (4)
where f(z) is the complex conjugate of fi(z). According to Telford et al. (1990),

the cross-correlation function of f;(z) and fs(x) is equivalent to the convolution of

fi(z) with fo(—z).
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The cross-correlation function r, can also be expressed as

oo [BEEO)

or

OOF KYF* (k i2mkx
T:c:/ 1( ) 2( )e dk,

3.5, (6)

S
where k is the wave number corresponding to the x-coordinate, Fj is the Fourier
transform of f;(x), Fy is the complex conjugate of the Fourier transform of fy(x),
S, is the standard deviation of f;, Sy is the standard deviation of f,, and F~!
represents the inverse Fourier transform. The displacement AZX of the second
waveform can be estimated by the location of the peak of the cross-correlation
function plotted as a function of z;,, = —x. For computing efficiency, the fast
Fourier transform (FFT) can be used instead of the Fourier transform to estimate
the displacement AZ. Let fi(z) and fy(x) be discrete functions, and N the number

of data points in the x-direction. Then FFT of fi(x), FFT; can be expressed as

N —12mkx
FPT, — 22iz1 J;lve A (7)

Similarly, FFT of fs(x), F'/F'Ty can be expressed as

N —i2mkx
FPT, — 22izt J?Ve A 8)

Using F'F'T7 and complex conjugate of F'F'T5, the cross-correlation function r,,can

be expressed as
B FFT Y (FFT\FFTy)
B S1.5; ’

Ty

(9)
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where S is the standard deviation of f;, S, is the standard deviation of f5, and
FFT~! represents the inverse fast Fourier transform. Since lidar backscatter
images are 2-dimensional (2-D), the functions fi(x, y) and fo(x, y) are used to
express backscatter intensities. In this case, the 2-D cross-correlation function, r,,
is defined. Let N, be the number of points in the x-direction, N, be the number of
points in the y-direction, k, be the wavenumber corresponding to the x-coordinate,
and k, be the wavenumber corresponding to the y-coordinate. Then 7., can be

expressed as
B FFT-YFFT\FFTy)

v 5155 ’ (10)
where .
E Ny o (kaz | Ry
FFT, = Zf\;l > filw,y)e (R ) -
L N.N, (11)
zVy
and o
Na Ny —i27r(NL;+NL;)
FFT, = Zi:l 2is fzj(\ﬂfﬁ,if)e ‘ (12
=ty

The displacement A7 between the two frames is estimated by identifying the
location of the maximum of the cross-correlation function (the “peak”) plotted as a

function of x4y = —2 and Y1y = —v.

Wind Velocity Fields
Figure 12 shows a possible arrangement of streamlines® of the wind
velocity field in the lower atmosphere. Spatial variability of the wind velocity field
is common (Venditti et al., 2013) and in this thesis a small selection of idealized,
simple kinematic flows were selected: uniform flow, converging flow, diverging flow,
rotational flow (vortex), and shear flow. The simplest way to represent these flow

fields is to use analytical functions to create these fields. For example, if the flow is

5A line that is parallel to the direction of the flow of a fluid.
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Figure 12. An example of a possible arrangement of streamlines of
the wind velocity field.

perfectly uniform, the flow field can be expressed by a constant (v = 10 m s71)
everywhere. In the case of convergent flow, the field can be expressed by an
analytical function of negative divergence. However, the real atmosphere is also
turbulent, so the effects of turbulence must be taken into account (Pope, 2000). To
make more realistic estimations of the wind velocity fields, one can add synthetic
turbulent perturbations produced by a model described by Mann (1994) and Mann
(1998) to the fields produced by the analytic functions. The resulting flow fields
can be used to move synthetic aerosol features and generate a pair of synthetic
backscatter images. In addition, one can easily calculate the mean and the
standard deviation of the velocity fields, and compare them with the velocities
estimated by the cross-correlation algorithm. Thus, the synthetic wind velocity

fields are useful to test the performance of the cross-correlation algorithm.

Literature Review
The cross-correlation method has been applied in various fields of study.
For example, Leese et al. (1971) applied it to geosynchronous satellite images to
derive wind from cloud motion. It has also been used to find the glacier surface
velocity estimation. According to Schubert et al. (2010), the glacier surface velocity

can be estimated by using two image pairs separated by 11 days, acquired by using
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the German sensor TerraSAR-X, and applying traditional cross-correlation
optimization. The glacier surface velocity estimation was performed using the
cross-correlation optimization and a dense image-matching algorithm based on
complex wavelet decomposition, and the results show that the cross-correlation
method is probably preferable to the wavelet-based algorithm for the glacier surface
velocity estimation using repeat TerraSAR-X images (Schubert et al., 2013).

The cross-correlation technique can also be used to estimate surface
displacements on mass movements from repeat optical images (Debella-Gilo and
K&db, 2011). According to Debella-Gilo and K&éb (2012), three typical mass
movement types, rockglacier creep, glacier flow, and land sliding, were estimated by
using the least square matching (LSM) and normalized cross-correlation, and the
accuracy of displacement estimation improved by over 90% under ideal (simulated)
circumstances.

The cross-correlation method can also be used to monitor seismic
activities. Yun et al. (2009) applied the cross-correlation method to hydroacoustic
data from the International Monitoring System arrays in the Indian Ocean to study
the earthquake sequence.

Particle image velocimetry (PIV).% is another field of study that utilies
this technique. The direct cross-correlation of image fields was introduced to
improve the performance of PIV in measuring instantaneous velocity fields (Keane
and Adrian, 1992). One of the examples of PIV schemes is to estimate bubble
velocity fields. According to Cheng et al. (2005), the recursive cross-correlation was
the best measurement of bubble motion in bubble plumes among several PIV

schemes tested. Another example is flow measurements in a blood-perfused

6An optical method of flow visualization to obtain instantaneous velocity and related
properties in fluids.
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collagen vessel. According to Antoine et al. (2013), advanced PIV cross-correlation
methods were applied to measure the flow velocities in blood perfused hydrated
tissue-representative microvessels using x-ray images.

In addition to these fields of study, the cross-correlation algorithm has
been applied several times to atmospheric lidar data to remotely estimate wind
velocity profiles in the planetary boundary layer. The earliest work was published
by Eloranta et al. (1975). The radial and transverse components of the wind
velocity in the convective boundary layer was estimated and compared to data from
a bivane anemometer installed on a tower and within the scanning region of the
lidar (Kunkel et al., 1980). The lidar measurements of wind velocity in the
atmospheric boundary layer has also been compared to winds derived from
radar-tracked pilot balloons (Sroga et al., 1980). Other related works include
Hooper and Eloranta (1986), Kolev et al. (1988), Sasano et al. (1982) and Piironen
and Eloranta (1995). Migration of the technique to derive two-component
horizontal vector wind fields was done by Mayor and Eloranta (2001). Comparison
of the resulting vectors to sonic anemometer data was done by Mayor et al. (2012)
and with Doppler lidar data by Mayor et al. (2013). While significant experimental
work has been conducted and collectively suggests viability of the technique, the
performance of the technique has not been tested prior to this thesis research with
simulated aerosol and wind fields.

A distinction is that in PIV discrete particles exist with relatively large
areas of nothing between them. The velocity is determined based only on the
movement of the particles which are good tracers of the flow. Lidar images do not
show individual particles, but contain backscatter intensity everywhere. Therefore,
the wind velocity is estimated based on the movement of macroscopic aerosol

features (i.e., plumes). When computing the cross-correlation function, all areas
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within the interrogation window contribute to the cross-correlation function but not
equally. For example, the brighter aerosol features are more likely to dominate over
the dimmer ones. Therefore, it is possible that the motion of the bright features
biases the answer. These features have larger powers (product of the area and the
intensity), compared to the surrounding regions. Thus, the hypothesis of this thesis
is that the displacement vector calculated by the cross-correlation algorithm is
more accurately described as the power-weighted average velocity, instead of the

area-weighted average velocity described by Schols and Eloranta (1992).

Purpose of Study

As described in the previous section, the cross-correlation algorithm has
been applied many times previously to real atmospheric lidar data and efforts made
to validate the results by comparing with other velocity measurements from other
remote and in situ sensors. Such experiments tend to be infrequent, expensive, and
present challenges when making the comparisons of wind velocities. For example,
the accuracy, precision, location, and resolution of the different forms of wind
measurements usually differs substantially. Furthermore, data collection requires
significant periods of time to sample a variety of wind and aerosol conditions.

By creating synthetic aerosol and wind fields in a computer, input data
to the cross-correlation is controlled rather than dependent on the atmosphere. In
other words, the methods used herein allow the algorithm to be tested in a highly
controlled fashion. Furthermore, the velocity field for the entire block area is known
and a measure of the central tendency (such as the mean) of the entire velocity
field can be calculated. Because of the uniqueness of horizontally scanning lidar
aerosol data, no other form of wind measurement can provide the spatial wind field

that is needed to calculate the correct answer. Therefore, the purpose of this study
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is to evaluate the performance of a cross-correlation algorithm from a new approach

involving the generation of synthetic images and wind fields.

Hypothesis
The cross-correlation algorithm is based on finding a single peak location
of the cross-correlation function, described by Eloranta et al. (1975). According to
Schols and Eloranta (1992), the displacement vectors calculated by the
cross-correlation algorithm is equal to the area-averaged velocities of the wind.
However, the peak of the cross-correlation function is likely sensitive to the motion
of predominant features in the interrogation window that have larger size and

higher intensities.



CHAPTER II

ANALYTICAL STUDIES

In practice, the cross-correlation functions for lidar backscatter images
are usually calculated numerically by the fast Fourier transform (FFT). However,
for some simple cases, one can find the cross-correlation function analytically, and
find an exact solution of the resultant displacement vector. In this section, the
cross-correlation algorithm is limited to two types of highly idealized features, a
Gaussian feature and a rectangular pulse, placed in an interrogation window. The
Gaussian feature has an intensity profile that obeys the Gaussian function.
Gaussian is a reasonable idealization because the turbulent diffusion of aerosol
particles results in Gaussian distributions of particle concentration in the case of
idealized uniform flow with homogeneous turbulence (Arya, 1999). The rectangular
pulse is a feature with constant intensity. Rectangular features are of interest
because of the discrete nature of digital data. Although the structure of aerosol
features in actual lidar backscatter images are much more complex, these cases
show how the cross-correlation function is calculated and they give some insights
about the performance of the cross-correlation algorithm for extremely idealized

cases.
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Analytical Approaches Using
a Gaussian Feature

Gaussian Integrals

To calculate the cross-correlation functions of such backscatter images,

the following integral must be evaluated.

o0

I= / e dx. (1)
This type of integral can be evaluated analytically. (Details of the derivation are in

Appendix A.) The result is

[e.o]

I = —Ax2 — z 2
/e dx 3 (2)

—00

Suppose the Gaussian function is instead e~ M=% where ¢ is a constant. Then, the
position of the peak is shifted ¢ units from the origin. If ¢ is positive, the peak is
shifted to the positive x direction. On the other hand, if ¢ is negative, the peak is
shifted to the negative x direction. However, the size and the shape of the Gaussian

function is unaltered, so the result of the integral must be the same. That is

This equation is also helpful to find the cross-correlation function analytically.

One-Dimensional Case in
a Uniform Flow

Suppose that there is only one Gaussian feature in a 1-D space, and the

Gaussian feature is at the origin, = 0, at time ¢;. Then, the backscatter image
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fi(z) at time t; can be expressed as

fi(z) = Toe™, (4)
where [ is the peak backscatter intensity of the Gaussian feature. Figure 13a
shows the backscatter image at time ¢, in the units of Iy. In this plot, the vertical
axis represents the backscatter intensity, and the horizontal axis represen<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>