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ABSTRACT

Numerical and field experiments were conducted to test an optimized cross-correlation algorithm (CCA)

for the remote sensing of two-component wind vectors from horizontally scanning elastic backscatter lidar

data. Each vector is the result of applying the algorithm to a square and contiguous subset of pixels (an

interrogation window) in the lidar scan area. Synthetic aerosol distributions and flow fields were used to

investigate the accuracy and precision of the technique. Results indicate that in neutral static stability, when

themean flow direction over the interrogation window is relatively uniform, the randomerror of the estimates

increases as the mean wind speed and turbulence intensity increases. In convective conditions, larger errors

may occur as a result of the cellular nature of convection and the dramatic changes in wind direction that may

span the interrogation window. Synthetic fields were also used to determine the significance of various image

processing and numerical steps used in the CCA. Results show that an iterative approach that dynamically

reduces the block size provides the largest performance gains. Finally, data from a field experiment conducted

in 2013 inChico, California, are presented. Comparisons withDoppler lidar data indicate excellent agreement

for the 10-minmeanwind velocity computed over a set of 150 h: the root-mean-square deviations (and slopes)

for the u and y components are 0.36m s21 (0.974) and 0.37m s21 (0.991), respectively, with correlation co-

efficients R2 . 0.99.

1. Introduction

The cross-correlation algorithm (CCA) is a mainstay

in the field of motion estimation. It is used to compute

the apparent motion of objects and fluid flows in the

fields of robotics, navigation, medical imaging, and

geosciences (Murray et al. 2009; Emery et al. 2003;

Avants et al. 2008; Schubert et al. 2013; Adrian and

Westerweel 2011; Cheng et al. 2005; Antoine et al.

2013). In the atmospheric sciences, the cross-correlation

algorithm has been applied to satellite imagery (Leese

et al. 1971; García-Pereda and Borde 2014), radar data

(Rinehart and Garvey 1978), and lidar data (Eloranta

et al. 1975; Shimizu et al. 1981; Kolev et al. 1988; Schols

and Eloranta 1992; Piironen and Eloranta 1995). Under

the assumption that macroscopic aerosol features are

advected by the wind, the wind velocity can be estimated

remotely from the apparent motion of the features in

lidar image sequences.

The CCA has been the primary numerical method for

determining fluid motion in particle image velocimetry

(PIV) experiments.1 In most PIV experiments, the fluid

is deliberately seededwith very small particles that serve

as robust tracers of the local flow. The particles are

typically illuminated with a laser light plane and indi-

vidual particles are discernible in the rapidly collected

sequence of images taken by a camera. The particles do

not change appreciably in shape nor in brightness as

they move. For low and moderate particle density ex-

periments, in which the fluid between the particles ap-

pears dark and does not contribute any information, the

motion of the small particles is solely relied upon for

determining the motion field. As a result, the cross-

correlation functions (CCFs) for PIV experiments con-

tain sharp peaks. Furthermore, few particles straddle the

edges of the interrogation window. Particles that appear

or disappear within the time between two frames, either
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by moving into or out of the interrogation window, or

into or out of the illumination plane, only contribute to

incoherent variance confined to the zero lag of the

CCF. The application of the CCA to derive air motion

from atmospheric aerosol backscatter lidar images

raises a set of issues that are not present in most PIV

experiments (at least low-density experiments). These

issues result from the time required for the lidar to

collect a scan, the inability to discern individual particles,

and the continuous range-dependent image intensity that

is a proxy to particle concentration (Held et al. 2012).

At the heart of the CCA is the computation of a CCF

from a pair of images. The location of the peak of the

CCF relative to its origin indicates the displacement of

dominant image features. A consequence of selecting a

single peak is the loss of information that describes the

true velocity field that causes the motion of features. As

reflected in the title of the paper by Schols and Eloranta

(1992), some have regarded the velocity estimate to be

the area average of the wind field in the interrogation

window. However, Schols and Eloranta (1992) do not

elaborate on their use of area average. The wind is a

vector and the average of a set of vectors may be com-

puted by vector averaging (summing the components first

and then computing the mean vector) or scalar averaging

(averaging the speeds and directions that result from each

vector in a set). In the former, a mean displacement

would result. In the later, the mean speed may be dif-

ferent from themagnitude of themean displacement, and

of more interest to the wind energy community, for ex-

ample. Moreover, it is possible that, because of the or-

ganization of the wind and the aerosol fields within the

interrogation window, CCA estimates do not equal an

area average at all. To investigate these issues, we gen-

erated synthetic aerosol images and velocity fields and

applied the CCA to the synthetic aerosol backscatter

images. This enabled us to compare the results of the

CCA with the mean of the synthetic velocity field that

was used to advect the synthetic aerosol structures.

In addition, the synthetic data are used to confirm the

necessary sequence of steps within the CCA. Mayor

et al. (2012) compared the results of a rudimentary CCA

applied to scanning elastic backscatter aerosol lidar data

to tower-mounted sonic anemometer wind measure-

ments between 10 and 30m AGL. The study showed

that the use of the CCA for interrogation windows that

were 500m3 500m and smaller produced plausible but

noisy results. However, a large and important part of the

spectrum of atmospheric motions exists at these micro-

scales. Thus, a higher spatial resolution of the wind ve-

locity fields is desired. The algorithm used by Mayor

et al. (2012) was functional but not optimal. It did not

include several steps tested in this paper that may

deliver better results. They are 1) zero padding to ac-

count for nonperiodic images, 2) use of a window func-

tion to reduce the undesirable effects of sharp edges and

aerosol features entering and leaving the block area, 3)

multipass interrogation for iterative refinement of the

motion estimation, 4) multigrid interrogation to im-

prove the spatial resolution of the resulting flow fields,

and 5) deformation of images to correct for the mean

advection of aerosol features during the time required to

complete one scan as described by Sasano et al. (1982).

Finally, because the synthetic images and velocity fields

are only an approximation to reality, we also conducted a

field experiment to validate the results of the optimized

CCA applied to real lidar data. The elastic backscatter

aerosol lidar system used was the Raman-shifted Eye-

safe Aerosol Lidar (REAL) (Mayor and Spuler 2004;

Spuler and Mayor 2005; Mayor et al. 2007). A single

compact Doppler lidar was used to validate the wind

velocity fields resulting from the optimized CCA applied

to the REAL aerosol backscatter images.

This paper is organized as follows: Section 2 introduces

the CCA and describes the options that improve the wind

velocity estimation. In section 3, the performance of the

CCA with these options is evaluated by using synthetic

lidar backscatter images and wind velocity fields. In

section 4, the performance of the optimized CCA is

validated by field experiments using the Doppler lidar

(DL) data as a reference.

2. Application of the cross-correlation algorithm to
elastic lidar backscatter images

Scanning lidar data are collected in a spherical co-

ordinate system with coordinates of azimuth, elevation,

and range. The data are processed and interpolated to a

Cartesian grid before the CCA is applied. The ‘‘pre-

processing’’ that is applied to each range-dependent lidar

backscatter array includes the calculation and subtrac-

tion of the raw background signal, multiplication of the

waveform by the range squared, conversion to decibels,

and the application of a high-pass median filter (Schols

and Eloranta 1992). The application of the high-pass

median filter is critical. It removes large-scale trends in

the backscatter arrays caused by attenuation (or real at-

mospheric structure) and leaves the smaller-scale back-

scatter perturbations that are more likely to be advected

by the local wind. For the REAL data, we typically use a

333-point filter window (500m in range) resulting in the

removal of features larger than one-half the filter length

(250m). The preprocessed data are then interpolated to a

Cartesian grid, which results in a 2D array referred to as

the image. In this work, the image is constructed by in-

terpolating to a Cartesian grid with a spacing of 10m in
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both the east–west and north–south directions. The CCA

can then be applied to any square subset of the image.

This subset is referred to as the interrogation window or

the block (see Fig. 1). In practice we often start with a

1km2 block containing 1003 100 data points. TheCCA is

applied to as many different blocks as desired to

compute a vector flow field.

a. The cross-correlation function

The CCF is a description of the correlation of two

arrays, as a function of delay (in time) or lag (in space).

When applied to blocks from a pair of consecutive

images, the peak location of the CCF indicates the

displacement of the dominant image features within

the time interval dt between the images. Let S(x, y, t)

stand for the preprocessed lidar data in a 2D image at

discrete times and let L stand for the length of one side

of the interrogation window. Then, the interrogated

signal, Spq(x, y, t), at the window center (xp, yq) is ex-

pressed as

S
pq
(x, y, t)5 S(x, y, t; x

p
, y

q
) , (1)

whose spatial domain is x 2 [xp 2 (L/2), xp 1 (L/2)] and

y 2 [yq 2 (L/2), yq 1 (L/2)]. Next, let t1 and t2 5 t1 1 dt

for reference times for two consecutive images. Then,

the corresponding interrogated signals Spq,1(x, y) and

Spq,2(x, y) are defined as

S
pq,1

(x, y)5 S
pq
(x, y, t

1
) (2)

and

S
pq,2

(x, y)5 S
pq
(x, y, t

2
) . (3)

The normalized 2D CCF at the interrogation window,

rpq, for two series, Spq,1(x, y) and Spq,2(x, y), is defined as

r
pq
5

Cov[S
pq,1

(x, y),S
pq,2

(x, y)]

s
1
s
2

, (4)

where Cov[Spq,1(x, y), Spq,2(x, y)] is the covariance of

the overlapped portions of Spq,1(x, y) and Spq,2(x, y), s1

is the standard deviation of Spq,1(x, y), and s2 is the

standard deviation of Spq,2(x, y) (Davis and Sampson

2002). For computational efficiency, the fast Fourier

FIG. 1. Diagram defining terminology used and relative locations of each object.
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transform (FFT) is widely used instead of Eq. (4). Let

Spq,j(xm, yn), j5 1, 2 be discrete signals in the interro-

gation window,Nx be the number of data points in the x

direction, Ny be the number of points in the y direction,

kx be the wavenumber corresponding to the x co-

ordinate, and ky be the wavenumber corresponding to

the y coordinate. The FFT of the given signals, FFTpq,j,

can be expressed as

FFT
pq,j

5
�
Nx

m51
�
Ny

n51

S
pq,j

(x
m
, y

n
)e2i2p[(kxxm)/(Nx)1(kyyn)/(Ny)]

N
x
N

y

, j5 1, 2, (5)

and the cross-correlation function at the interrogation

window rpq can be expressed as

r
pq
5

FFT21(FFT
pq,1

FFT
pq,2
* )

s
1
s
2

, (6)

where FFTpq,1 is the FFT of fpq,1(x, y), FFTpq,2* is the

complex conjugate of FFTpq,2, and FFT21 represents the

inverse fast Fourier transform.

b. Zero padding

The FFT is designed for periodic signals, but real at-

mospheric lidar data are not periodic. Thus, it is im-

portant to circumvent the assumption of periodicity by

using ‘‘zero padded’’ arrays (Adrian and Westerweel

2011). Each dimension is padded by zeros over a domain

that is twice the size of the original signal, so three-

quarters of the arrays for input to the FFT are filled with

zeros (Bastiaans 2000). The first input array contains the

data from the first interrogationwindow in the lower-left

corner and zeros elsewhere. The second input array

contains the data from the second interrogation window

in the upper-right corner and zeros elsewhere. Figure 1

shows this arrangement. This is done because the com-

plex conjugate of the FFT of the second input array is

used to compute the CCF. According to Hamada (2014),

the performance of a CCA using 100 pairs of synthetic

backscatter images and synthetic wind velocity fields are

slightly increased by using zero-padded images.

c. Histogram equalization

Histogram equalization enhances image contrast by

adjusting the histogram distribution of pixel intensity.

The histogram function is used to obtain the density

distribution of the interrogated signal. Let Sj(xm, yn)

stand for the discrete signal in the interrogation window.

Then, the histogram function Hj is defined as

H
j
5 �

Nx

m51
�
Ny

n51

P[S
j
(x

m
, y

n
), i], i5 1, 2, . . . ,

S
max

2 S
min

w
,

(7)

whereNx is the number of data points in the x direction,

Ny is the number of points in the y direction, Smax is the

maximum value of Sj(xm, yn), Smin is the minimum value

of Si(xm, yn), w is the bin width, and

P[S
j
(x

m
, y

n
), i]5

8><
>:

1: i#
S
j
(x

m
, y

n
)2 S

min

w
# i1 1,

0: otherwise.

Term Hj is integrated to obtain the cumulative density

probability function and it is transformed to a histogram-

equalized byte array. After processing, the values of the

discrete signals range from 0 to 255.

Histogram equalization has been used previously for

computing horizontal wind vectors from lidar backscatter

images (Schols and Eloranta 1992). Without histogram

equalization, the motion of small areas of bright features

may dominate the CCF. In that case, the cross corre-

lation may be biased toward the motion of the small

and bright features. On the other hand, with histogram

equalization, other dimmer features in the image are

able to influence the CCF. However, according to

Hamada (2014), histogram equalization tends to

broaden the peak of the CCF thereby increasing un-

certainty of the peak location. Since our experiment to

test histogram equilization involved only one relatively

strong wind case (mean wind speed of approximately

10m s21), the effects of histogram equalization should

be investigated for other scenarios in the future to

determine whether it is broadly beneficial.

d. Window function

The performance of the CCA decreases if bright

features straddle the edges of the interrogation window.

This tends to distort the shape of the CCF, shifts the

location of its peak, and leads to an underestimation of

the wind velocity vector. Window functions, such as the

Tukey window, may be applied to taper the backscatter

intensity near the image block edges. Let N be the x

dimension of a 1D array. Then, the 1D Tukey window

w(x) is defined as
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w(x)5

8>>>>>>>><
>>>>>>>>:

1

2

�
11 cos

�
p

�
2x

a(N2 1)
2 1

���
: 0# x#

a(N2 1)

2
,

1:
a(N2 1)

2
# x# 1(N2 1)

�
12

a

2

	
,

1

2

�
11 cos

�
p

�
2x

a(N2 1)
2

2

a
1 1

���
: (N2 1)

�
12

a

2

	
# x# (N2 1),

where a is a constant that determines the width of the

cosine lobe of the window (Tukey 1967). It is set to

0.2 for this study. The Tukey window function w(x) can

be extended to 2D by multiplying by w(y) in the y di-

rection. The 2D Tukey window is expressed as

w(x, y)5w(x)w(y). The Tukey window effectively de-

creases the intensity of aerosol features near the image

block edges, thus reducing undesirable effects such as

Gibbs phenomenon. Other window functions (such as

triangular, Parzen, Hann, Blackman, etc.) may also be

effective.

e. Multipass interrogation

The CCF for two consecutive lidar backscatter blocks

gathers contributions from aerosol features that appear

in both blocks. Because aerosol features are advected

by the wind, some aerosol features in the first image

block may move out of the interrogation window in the

time interval between consecutive scans. During that

time, aerosol features initially outside the first blockmay

appear in the second block. In this case, these features

do not contribute to the CCF, and the wind velocity may

be underestimated. For example, if the wind velocity

field is nonuniformwithin an interrogationwindow, then

the aerosol features with lower velocity tend to remain

within two consecutive image blocks, while those mov-

ing faster tend to disappear. In this case, the CCA is

biased and underestimates the wind velocity field in the

interrogationwindow.Amultipass interrogation (Raffel

et al. 2007) can minimize such effects. This approach

iterates two steps: (i) compute a displacement vector

from two image blocks by the cross correlation and

then (ii) displace the center of the second block ac-

cording to this vector. Each vector is an incremental

refinement of the solution, and the process repeats until

the magnitude of the incremental vector falls below 1

pixel—typically, after two or three iterations. The

subpixel location of the peak of the CCF is then esti-

mated by curve fitting following Piironen and Eloranta

(1995). Finally, the solution vector is given by the sum

of the incremental estimations and the subpixel loca-

tion. Following this process, the displaced second block

contains a similar number of the features that also ap-

peared in the first image block. The CCF is therefore

better defined, and the accuracy of the motion esti-

mation increases.

f. Multigrid interrogation

The CCA provides one wind velocity vector per in-

terrogation window. The typical size of a large in-

terrogation window, for elastic lidar backscatter images,

is about 1 km 3 1 km, which is larger than the size of

most turbulent coherent structures. With a large block

size, most microscale structures cannot be resolved al-

though they are important meteorological phenomena.

In this case, multigrid interrogation can be used to in-

crease the spatial resolution of the wind velocity vector

field. Multigrid interrogation is similar to multipass in-

terrogation except that the dimensions of the blocks are

reduced after each pass (Adrian and Westerweel 2011).

In general, the number of features that appeared in both

blocks decreases as the block size is reduced—typically,

the size reduction factor is 50%. However, displacing

the second block increases the similarity of these blocks

and makes it possible to resolve the wind velocity vector

for a relatively small region (less than 500m 3 500m).

Mayor and Eloranta (2001) applied multipass in-

terrogation and multigrid interrogation but were not

able to validate the resulting flow fields.

g. Image deformation

Lidar scans do not represent an instantaneous distri-

bution of aerosol features as in a ‘‘snapshot’’ because of

the time required to complete a scan; that is, during a

scan some aerosol features are observed before others,

while all features are advected by the wind. The result

is a distorted image relative to the ideal snapshot. Be-

cause of this, apparent displacements are inaccurate and

the motion estimation is biased. This problem was first

discussed by Sasano et al. (1982), who proposed an it-

erative correction of image deformation. In this process,

aerosol features that are observed before and after a

reference time within a given scan are translated for-

ward and backward, respectively, according to the mean

estimated wind velocity in the entire region of the scan.

The process is repeated until the mean velocity is

changed by less than 1%.After the image correction, the

deformed image approximates a snapshot of the true
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lidar backscatter distribution at the reference time,

here corresponding to the time associated with the back-

scatter arrays collected in the center of the sector. While

processing and comparing the time series data presented

in section 4, we noticed a clear bias in the velocity esti-

mates when the image deformation was turned off. The

magnitude of the bias increased with themean wind speed

andwas eliminatedwith the image deformation turned on.

h. Quality control

In general, the signal-to-noise ratio (SNR) of elastic

backscatter data decays as one over the range squared.

At long ranges, the noise amplitude may dominate the

backscatter from coherent aerosol features. Applying

the CCA to such data can result in areas of spurious,

random vectors. In other circumstances, the aerosol fea-

tures can lead to a peak of the CCF at a location that does

not represent the actual motion. Such situations aremore

likely to occur close to the scan edges, or when high wind

speeds are involved. They result in isolated spurious

vectors, known as outliers. These two distinct sets of er-

roneous estimates are detected by two different mecha-

nisms inspired from the PIV expertise.

A first step consists of discarding vectors for which the

value of the peak of the CCF is below a certain thresh-

old. This test is efficient at detecting erroneous vectors

resulting from low SNR backscatter data, typically re-

moving patches of vectors in the far range. The second

step is handled once the whole vector field has been

estimated. It is the normalized median test, as described

in Adrian and Westerweel (2011) and Westerweel and

Scarano (2005). It assumes a local, spatial coherence of

the vector field and therefore is able to detect isolated

outliers that were missed by the previous test.

For a displacement vector d, these tests can be written

as

if r
pq,max

, t
r
(noisy data)

or
jd2 d

m
j

s
m
1s

�

, t
m
(isolated outlier)

9>>=
>>;

0 ddiscarded,

(8)

where rpq,max is the value of the peak of the CCF, tr is a

threshold value of the peak of the CCF, dm is the median

of the eight vectors di neighboring d, sm is the median of

the neighboring residuals fjdi 2 dmj, i5 1, . . . , 8g, s« is

the acceptable fluctuation level due to the CCF, and tm
is a threshold value for the normalized median test. In

this work, the threshold values are tr 5 0:2 and tm 5 2.

The typical root-mean-square noise level of the PIV

data is about 0.1 pixels (Westerweel 2000), so s« 5 0:1

was chosen for this study. Since the normalized CCFs

were used, the same threshold value tr 5 0:2 can be used

for different size of blocks. In addition, the universality

of the normalized median test makes it suitable for it-

erative PIV interrogation schemes (Raffel et al. 2007).

Thus, both of these tests do not depend on the size of

the blocks and can be integrated to a multigrid inter-

rogation process. They are applied after each step of

the multigrid interrogation. Vectors flagged as spurious

are replaced by their value at the previous step of the

estimation, if available, and the estimation process

stops. As such, the algorithm is adaptive: the estimation

proceeds to smaller blocks (finer motion scales) only

when the quality of data is locally good enough to

support it.

i. Implementation

A simplified diagram of the operational algorithm is

presented in Fig. 2. It combines iterations of the dis-

tortion correction (section 2g), the multigrid in-

terrogation (section 2f), and the multipass estimation

(section 2e). For each vector, there can be up to 27 it-

erations total (three for each of the distortion correc-

tion, multigrid, andmultipass), with as many evaluations

of the CCF. To complete the execution of the motion

estimation within the time between two scans of the

REAL, the core pieces of the method (CCF, histogram

equalization, interpolation for the distortion correction)

are written in the ComputeUnifiedDevice Architecture

FIG. 2. Simplified diagram of the CCA.
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(CUDA) language (Mauzey et al. 2012). These func-

tions are executed in a massively parallel fashion on

specific graphic processing units that are designed for

scientific computation, thus enabling real-time execution.

3. Tests using synthetic backscatter images and
wind velocity fields

Unlike other wind measurement techniques that

sample relatively small volumes of the atmosphere, the

CCA relies upon spatial data over a large area to make a

velocity estimate that is assigned to a single point (the

location of the center of the interrogation window).

The spatial data are the aerosol backscatter field in the

interrogation window. If the actual wind field is uniform

throughout the interrogation window, then the spatial

distribution of aerosol features that contribute to the

CCF does not matter. However, the wind velocity in the

real world is spatially variable. Therefore, it is reason-

able to question whether the peak of the CCF

represents a central tendency of the actual spatial wind

field within the interrogation window. This is because

the aerosol features may not be uniformly distributed

across the interrogation window, or they may be corre-

lated with velocity structures.

To study this problem, we developed synthetic velocity

fields and synthetic aerosol backscatter images. The syn-

thetic velocity fields, although not continuously defined,

are high in spectral integrity, of much higher resolution

than can be obtained from present observing techniques,

and enable us to calculate the spatial mean velocity. The

synthetic backscatter field enables us to confirm the pre-

viously suggested notion that the CCA results in an area

average of the wind field in the interrogation window.

The structure of turbulence depends on the static sta-

bility (Moeng and Sullivan 1994; Khanna and Brasseur

1998). Turbulence may be generated by shear or con-

vection or some combination of both. During periods of

neutral static stability, turbulence is generated only by

shear. Coherent wind and aerosol structures tend to be

elongated and aligned with the mean wind direction

(streaks). During periods of pure convection in the lower

boundary layer, cellular flow structures exist. The cells are

characterized by broad areas of subsidence and divergence

and share borders of strong convergence and updrafts

(Schmidt and Schumann 1989). Often, vortices form near

the intersections of the convergence lines (Kanak 2005).

Because these two stability regimes produce different

turbulence coherent structures, we created two types of

synthetic flow fields for testing. For pure shear-induced

turbulent flows, we added small-scale turbulent pertur-

bations to a uniform velocity field. For pure convection,

the four fundamental kinematic components (divergence,

rotation, stretching deformation, and shearing de-

formation) (Holton and Hakim 2013, 23–25) of fluid flow

fields were generated.

To generate synthetic backscatter and velocity fields,

we first defined a Cartesian grid. The grid spacing

(dx5 dy5 10m) and the time between two consecutive

images (dt5 10 s) were chosen so that the motion of one

unit (10m) during a time step (10 s) represents a velocity

of 1m s21. A synthetic backscatter image is created

initially by assigning random numbers to the grid points.

Then, a 25 3 25 pixel rectangular smooth is applied to

the random numbers to approximate a field of coherent

structures with the characteristic length scale of 250m.

Next, small Gaussian features were randomly added

to simulate local sources of aerosol features that are

FIG. 3. Comparison of (left) a synthetic backscatter image and (right) a REAL backscatter

image. The REAL backscatter image was collected at the University Farm at California State

University, Chico, on 17 Oct 2013.
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routinely observed in REAL data. Then, a synthetic

turbulent velocity perturbation field, as generated by the

model of Mann (1994, 1998) was used to diffuse both

the sum of the Gaussian features and background. The

Mannmodel is a spectral tensor turbulencemodel based

on rapid distortion theory (Durbin and Reif 2010) that

provides idealized three-component spatial velocity

fields with realistic turbulence structure for neutral at-

mospheric surface-layer flows. The model is widely used

in the field of wind engineering. To run the model, we

specified three-dimensional domains containing 512 3
512 3 32 wind vectors spaced at 10-m intervals in all

dimensions. The turbulence intensity was controlled by

the roughness length and the mean velocity. Multiple

independent velocity perturbation fields were used to

diffuse the aerosol field. Figure 3 shows a synthetic

backscatter image resulting from this procedure and a

REAL backscatter image. The REAL backscatter im-

age was extracted from a lidar scan collected at the

University Farm at California State University, Chico,

on 17 October 2013. The REAL backscatter data was

also interpolated to a 10m 3 10m grid. From Fig. 3,

similar spatial gradients and backscatter intensity ranges

can be observed in both images although the exact dis-

tributions of aerosol features are different.

Next, the synthetic backscatter field must be displaced

to generate a synthetic backscatter field at a subsequent

time. A second image corresponding to t2 was generated

by displacing the synthetic backscatter image according

to a synthetic velocity field as described below. Values

on the Cartesian grid were obtained from the bicubic

interpolation of the displaced image data using ho-

mogeneous Neumann boundary conditions. The syn-

thetic velocity field used for the displacement of image

synthetic aerosol features from one frame to the next

was created by adding new turbulent perturbations to

analytic functions. Let u(x, y) and y(x, y) be the east–

west and the north–south components of the wind ve-

locity, and u0(x, y), and y0(x, y) be the corresponding

turbulent perturbations generated by the Mann model

(Fig. 4). Then, the wind velocity field can be expressed as

�
u(x, y)

y(x, y)

�
5

�
u
a
x1 u

b
y1 u

c
1u0(x, y)

y
a
x1 y

b
y1 y

c
1 y0(x, y)

�
, (9)

where ua, ub, uc, ya, yb, and yc are constants. For shear-

driven turbulent flow (neutral static stability) we set

ua 5 ub 5 ya 5 yb 5 0, so the velocity fields can be ex-

pressed as

�
u(x, y)

y(x, y)

�
5

�
u
c
1 u0(x, y)

y
c
1 y0(x, y)

�
. (10)

Since the Mann model is designed for neutral condi-

tions, we chose not to use it to generate turbulent per-

turbations for convective conditions. Therefore, to

simulate flow structures that we routinely observe with

FIG. 4. The (a) u and (b) y components of shear-induced turbulent

wind perturbations resulting from the Mann model.
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the lidar in the lower convective boundary layer, we set

u0(x, y)5 y0(x, y)5 0 resulting in

�
u(x, y)

y(x, y)

�
5

�
u
a
x1 u

b
y1 u

c

y
a
x1 y

b
y1 y

c

�
. (11)

To specify these remaining terms, we used analytic

functions for four fundamental kinematic flow structures:

divergent flow [ua 5 0:1 s21, yb 5 0:1 s21, uc 52uax0, and

yc 52yby0, where (x0, y0) is the center of divergence],

rotational flow (ub 520:1 s21, ya 5 0:1 s21, uc 52uby0,

and yc 52yax0), stretching deformation (ua 5 0:1 s21,

yb 520:1 s21, uc 52uax0, and yc 52yby0), and shearing

deformation (ub 5 0:1 s21, ya 5 0:1 s21, uc 52uby0, and

yc 52yax0). Figure 5 shows streamlines of these flow

fields. While the finescale turbulent perturbations used

in the neutral shear cases are absent, we assert that

the analytic functions represent the most important

horizontal velocity transport features, resulting from

buoyancy-driven flows at altitudes in the lower

boundary layer. These are highly idealized changes in

wind speed and direction associated with convection

cells that occur on length scales similar to the di-

mensions of interrogation windows and are responsible

for the advection and distortion of aerosol features on

the time scales required to repeat lidar sector scans.

The CCA was applied to the synthetic pairs of images

and velocity vectors were computed. The precise peak

location of the CCF is estimated by fitting a 2D surface

(polynomial of degree 2) to the peak (5 3 5 pixels).

Without this subpixel interpolation, the theoretical error

on the estimated motion is 60:5dx/dt on each velocity

component. Each experiment was repeated on 100 dif-

ferent pairs of synthetic backscatter images, and the

mean and the standard deviation of the velocity vectors

were compared with the mean velocity of the given

synthetic wind velocity field.

a. Significance of optional steps

The experiments with synthetic data were used to

elucidate two aspects of the CCA. First, they were used

to study the significance of the impact of the optional

numerical procedures within the CCA (described in

section 2 and Table 1). Results are shown in Table 2. The

image distortion correction, as described by Sasano et al.

(1982), was not included since there is no image distor-

tion for the synthetic lidar backscatter images. The five

options of the CCA are the multipass interrogation

(MP), the multigrid interrogation (MG), the zero pad-

ding (ZP), the Tukey window (TW), and the histogram

equalization (HE). None of these options are included

for test 1, but all five options are included for test 6.

A block size of 25 3 25 pixels, which corresponds to

250m 3 250m regions of REAL backscatter images,

was chosen to evaluate the performance of the CCA

in the smallest of the block sizes used in the real-time

operational version of our algorithm.

The multipass and multigrid interrogations contribute

themost to the performance of the CCA, while the other

options bring relatively small improvements. The his-

togram equalization and the Tukey window tend to

slightly underestimate the u component but provide

better estimation of the y component, making a correc-

tion of the wind direction estimation. On the other hand,

the zero padding tends to reduce the underestimation of

the u component and improve the estimation of the wind

speed. Overall, the results suggest that the performance

of the CCA for the relatively small region is optimized by

applying all five options.

FIG. 5. Streamlined flow fields for pure (a) divergence, (b) rotation, (c) stretching deformation, and

(d) shearing deformation. The centers of the functions were deliberately offset because the interrogation

window is unlikely to be perfectly centered on such flow structures when applied to real data.

TABLE 1. The tests of the CCA using synthetic backscatter im-

ages and the velocity fields. The five options of the CCA are MP,

MG, ZP, TW, and HE. Symbols U and 3 represent that these

options are turned on and off, respectively.

Options MP MG HE ZP TW

Test 1 3 3 3 3 3
Test 2 U 3 3 3 3
Test 3 U U 3 3 3
Test 4 U U U 3 3
Test 5 U U U U 3
Test 6 U U U U U
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b. Accuracy and precision of the wind estimates

The use of a Cartesian grid and a discrete time interval

between scans tends to quantize the CCA velocity esti-

mates. Fitting a 2D polynomial function to the 5 3 5

domain around the peak of the CCFs, following

Piironen and Eloranta (1995), ameliorates quantization

somewhat, but it does not eliminate it. In our use of

synthetic data with dx5 dy5 10m and dt5 10 s, we

observed that the accuracy and precision of the CCA

speed estimates oscillates as a function of the true mean

speed, and it becomes increasingly pronounced as the

flow field increases in uniformity. The period of the

oscillations is 1m s21, reflecting our choice of dx, dy

and dt. The experiments showed that the CCA tends

to underestimate the velocity when the mean speed is

below the halfway point between intervals of dx/dt, and

it tends to overestimate the velocity when the mean

speed is above the halfway point between intervals of

dx/dt. For wind speeds between 1 and 2m s21, this can be

as much as625% relative error. Furthermore, for mean

wind speeds near the halfway point between integer

multiples of dx/dt (1.5, 2.5, 3.5ms21, etc.), the standard

deviation of velocity estimates reaches local maxima as

large as 0.3ms21—indicating a loss of precision at those

mean speeds. It appears that these errors, which oscillate

with speed, are common as described by Chen and Katz

(2005) and are highlighted in Fig. 1 in their paper. Chen

and Katz (2005) offer an alternative method to achieve

subpixel velocity resolution. Unfortunately, however, im-

plementing their algorithmwas not possible in our project.

By including turbulence (i.e., including spatial vari-

ability of the wind field) and gradually increasing the

mean wind speed for neutral conditions, we observed

that the oscillations in systematic errors become second-

ary to random errors resulting from the effects of a

TABLE 2. The results of the tests of the CCA using synthetic backscatter images for light (top two rows), moderate (middle two rows),

and strong (bottom two rows) wind cases. The 2D synthetic velocity field and the test results are expressed in meters per second. The first

and the second rows show the mean velocity and the standard deviation (SD), respectively, obtained from 100 estimations.

Velocity field (m s21) Test 1 (m s21) Test 2 (m s21) Test 3 (m s21) Test 4 (m s21) Test 5 (m s21) Test 6 (m s21)

Mean (1.027, 0.002) (0.509, 0.008) (0.563, 0.008) (1.018, 20.001) (0.988, 0.001) (1.006, 0.001) (1.008, 0.002)

SD (0.282, 0.063) (0.345, 0.060) (0.192, 0.011) (0.187, 0.007) (0.004, 0.002) (0.014, 0.011)

Mean (5.811, 0.088) (3.538, 20.005) (4.282, 20.154) (5.676, 20.036) (5.648, 0.156) (5.718, 0.154) (5.608, 0.142)

SD (1.891, 1.155) (1.901, 2.202) (0.394, 0.493) (0.383, 0.165) (0.309, 0.153) (0.452, 0.191)

Mean (11.79, 0.194) (5.305, 20.134) (6.575, 0.748) (11.70, 20.672) (11.64, 0.612) (11.68, 0.766) (11.32, 0.586)

SD (6.654, 4.579) (8.139, 17.39) (0.798, 1.173) (0.795, 0.658) (0.752, 0.810) (0.498, 0.749)

FIG. 6. Absolute error of the optimized CCA as a function of

mean wind speed based on experiments with synthetic flow fields

(neutral static stability) and synthetic aerosol distributions. The red

line represents accuracy, or the systematic error associatedwith the

mean of 100 trails for a given true mean speed. The light blue

shaded region corresponds to one standard deviation and reflects

the precision. The oscillations at slow true mean speeds are the

result of the less-than-ideal performance of the polynomial fit used

to obtain subpixel velocity resolution. The increasing standard

deviation of the estimates with speed is the result of increasing

turbulence intensity.

FIG. 7. Relative errors of the optimized CCA as a function of

mean wind speed based on experiments with synthetic flow fields

(neutral static stability) and synthetic aerosol distributions. These

are the same data as plotted in Fig. 6, except they have been nor-

malized by the corresponding true mean speed and are therefore

unitless.
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nonuniform wind field and the resulting deformation of

aerosol features. The result is shown in Fig. 6. The red line

was computed from (Ve 2 kVtk)/Vt, where kVek repre-

sents the mean speed of 100 CCA estimates and kVtk
represents the true spatialmean speed in the 253 25 pixel

interrogation window. The light blue shaded region

represents one standard deviation of the 100 CCA

estimates. Figure 7 shows the same results scaled ac-

cording to the true mean wind speed. It indicates that

the systematic error is approximately 2% and the

random error is approximately 6% at 10m s21 true

mean speed.

The optimized CCA (with all five options) was also

applied to the four flow structures that are typically

observed in the lower convective boundary layer (di-

vergent, rotational, stretching deformation, and shear-

ing deformation). Table 3 lists the results of the tests for

the four flows. By comparing test 6 of Table 2 and Table

3, one can see that the performance of the optimized

CCA for convective flows was lower than all three cases

of shear-induced turbulent flow. We attribute this to the

diversity of wind directions within the interrogation

window, sometimes displacing aerosol structures in op-

posing directions. In the unlikely case where a CCF

contains two peaks of equal value, the algorithm will

report only one. Therefore, when applied to regions of

strong shear (i.e., an interrogation window with half

easterly flow and half westerly flow as a worst case), the

CCA will fail to provide the vector average of the true

velocity field.

While the use of synthetic images and flow fields are

powerful tools for testing the algorithm, they also have

severe limitations andmiss relevant physics that occur in

the real world. Foremost, our 2D synthetic images and

flow fields lack the realism of the 3D nature of aerosol

and wind. In the real world, aerosol features may pass

through the scan plane, resulting in false apparent mo-

tions. Also, in the real world, air parcels could move

circuitously and not at constant velocity during the time

between scans.

4. Comparison with Doppler lidar wind
measurements

As described by Mayor et al. (2012), a rudimentary

CCA was applied to REAL data collected during the

Canopy Horizontal Array Turbulence Study (CHATS;

Patton et al. 2011), from March to June of 2007 near

Dixon, California. The REAL was located 1.61 km

north of the National Center for Atmospheric Research

(NCAR) Integrated Surface Flux Facility (ISFF) 30-m

vertical tower. The tower was surrounded by an orchard

(800m3 800m) of walnut trees approximately 10m tall.

Five Campbell Scientific CSAT3 3D sonic anemome-

ters were located on the tower at 12.5, 14.0, 18.0, 23.0,

TABLE 3. The results of the tests of the optimized CCA using synthetic backscatter images for divergent flow, rotational flow, stretching

deformation, and shearing deformation wind cases. The 2D synthetic velocity field and the test results are expressed in meters per second.

The first and the second rows show the mean velocity and the SD, respectively, obtained from 100 estimations.

Velocity field (m s21) Optimized CCF result (m s21)

Divergent flow Mean (1.000, 0.000) (0.967, 20.026)

SD (0.718, 0.454)

Rotational flow Mean (1.000, 0.000) (0.816, 0.0795)

SD (0.733, 0.653)

Stretching deformation Mean (1.000, 0.000) (0.875, 0.062)

SD (0.654, 0.498)

Shearing deformation Mean (1.000, 0.000) (0.652, 0.0453)

SD (0.629, 0.510)

FIG. 8. A map showing the experimental setup at the University

Farm at California State University, Chico, in 2013. The yellow

lines represent the University Farm border. The two red symbols

(3) represent the locations of the REAL system and the DL, re-

spectively. The blue region represents the PPI scans collected by

the REAL system for the experiment.
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and 29.0m AGL to measure the wind velocity. The

REAL scanned the atmosphere nearly horizontally over

the orchard, and the rudimentary CCA was applied to

estimate the wind velocity in a series of different sized

blocks centered on the tower.

The REAL dataset from CHATS was groundbreak-

ing but it had some deficiencies. In particular, the

ISFF tower and nearby trees caused hard-target re-

flections, creating intermittent bright pixels and large

shadows in the aerosol backscatter data that prevented

optimal retrieval of wind fields by cross correlation.

Moreover, the REAL platform settled into the soil

during the experiment and precise measurements of the

pitch and roll of the instrument were not available. This

resulted in uncertainty of the altitude of the lidar scan at

the location of the tower. Given the strong speed shear

with increasing altitude in the roughness sublayer just

above the top of the canopy, Mayor et al. (2012) chose

not to calculate and compare temporal mean wind ve-

locity data and instead focused on the instantaneous

wind vectors resulting from the CCA.

To move forward, a new field experiment was con-

ducted in Chico, California, from May of 2013 through

January of 2014. Chico is 130km north of Dixon and has

less variable relative humidity than Dixon due to its

distance from the Sacramento–San Joaquin River delta.

However, nearby agriculture activities and boundary

layer convection offer good conditions for testing. In

the Chico experiment, a Halo Photonics Streamline

Doppler lidar (serial number 0811–35, manufactured in

November 2011) was employed as the reference system

in order to avoid hard target reflections associated

with mast-mounted in situ sensors. The DL operated

at a wavelength of 1.5mm, a pulse energy of 20mJ,

FIG. 9. Vertical cross-section diagram for the 2013 Chico field

experiment. The REAL scans the atmosphere at 48 elevation. The
DL is located 1523m from the REAL and operated in vertical

profile mode. With an elevation angle of 438, the DL samples at

100m AGL were 107m from the center location.

FIG. 10. Diagram of lidar data density in a 250m3 250m area at

100m above the DL location. REAL aerosol backscatter (1) and

DL radial velocity measurement (d).

FIG. 11. Time series of wind speed and direction, as estimated by the DL (blue) and by the

optimized CCA (green) from REAL backscatter images for a light wind case starting at

1500 UTC 23 Oct 2013. Each plus (1) represents an individual estimation or measurement,

separated by approximately 17 s. Solid lines represent 10-min rolling averages.
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a pulse rate of 15 kHz, and a pulse duration of 150 ns

[full width at half maximum (FWHM)]. The REALwas

on firm ground and the pitch and roll of the platform

was recorded to ensure precise knowledge of the alti-

tude of the laser beam as a function of range. Both the

REAL and the DL data acquisition systems were syn-

chronized to global positioning system (GPS) time.

Since a single DL cannot retrieve a 2D two-component

wind velocity field, the following two experiments were

conducted.

a. Temporal validation

The DL was located at a range of 1523m and a

heading of 158 azimuth and operated in a mast re-

placement mode for this part of the field experiment

(see Figs. 8–10). Horizontal wind vectors between 30

and 170m AGL at 10-m intervals were calculated from

a sequence of four inclined beams and one vertical

beam every 17 s. The inclined beams were directed 438
above horizontal in the cardinal directions, resulting

in the sampling of radial velocities at a horizontal distance

of 107m from the DL at 100m AGL. Typical agreement

for equivalent DLs to mast-mounted in situ wind sensors

is 1% or better for both speed and direction.

The REAL system scanned the atmosphere

between 2158 and 458 azimuth, at 48 elevation, in about

15 s. Then, the optimized CCAwith all options (MP,MG,

HE, ZP, and TW) was applied to estimate the wind ve-

locity in a block of the dimensions 250m 3 250m cen-

tered directly over the DL at the altitude of 100m AGL.

Figure 10 shows the backscatter data density for the

REAL system (1) and the DL (d) radial velocities

FIG. 12. Time series of wind speed and direction, as estimated by the DL (blue) and by the

optimized CCA (green) from REAL backscatter images for a moderate wind case starting at

1500 UTC 17 Sep 2013. Each plus (1) represents an individual estimation or measurement,

separated by approximately 17 s. Solid lines represent 10-min rolling averages.

FIG. 13. Time series of wind speed and direction, as estimated by the DL (blue) and by the

optimized CCA (green) from REAL backscatter images for a strong wind case starting at

1500 UTC 9 Oct 2013. Each plus (1) represents an individual estimation or measurement,

separated by approximately 17 s. Solid lines represent 10-min rolling averages.
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within a 250m 3 250m block at the altitude of 100m

AGL. The distortion correction, as discussed by Sasano

et al. (1982), was applied to all REAL backscatter images

before the wind velocity estimation.

The quality of the aerosol backscatter data depends

upon the performance of the instrument and the state of

the atmosphere. In the following, for sake of brevity,

only three cases featuring different wind conditions are

presented as examples: low, moderate, and strong wind

speeds. Then, a statistical analysis of 15 days of data that

occurred in September and October of 2013 are con-

sidered. These 15 days present the best-quality aerosol

backscatter data at the DL location during daytime

while covering a broad range of wind speeds (0–16ms21)

and constant to variable wind directions. Therefore, these

days constitute the best dataset to analyze the perfor-

mance of the algorithmwhile minimizing any weaknesses

due to the instrument or nonoptimal atmospheric con-

ditions. They were selected by analyzing the ‘‘image

SNR’’ as detailed in Dérian et al. (2015).

1) LIGHT WIND CASE

Figure 11 shows time series of wind speeds and di-

rections, as estimated by the DL (blue) and by the op-

timized CCA (green) from REAL backscatter images

for a 12-h period starting from 1500 UTC 23 October

2013. Skies were clear with a maximum air temperature

at the REAL of 29.28C at 1632 Pacific daylight time

(PDT) (2332 UTC). Range–height indicator (RHI)

scans made by the REAL reveal a shallow convective

boundary layer that did not exceed approximately

300-m depth during the day. Plus symbols represent the

individual estimates and the line a 10-min rolling average.

This is an example of a light wind case where the wind

speed ranges between 0 and 2ms21 and the wind di-

rection is variable. The results show that the time series

of both methods are very similar except for a 2-h period

between 1500 and 1700UTC, where no coherent aerosol

features were present. The correlation coefficients R2

for the 10-min averaged wind speed and direction be-

tween the optimized CCA and the DL are 0.829 and

0.658, respectively.

2) MODERATE WIND CASE

Figure 12 shows time series of wind speeds and di-

rections, as estimated by the DL (blue) and by the op-

timized CCA (green) from REAL backscatter images

for a 12-h period starting from 1500 UTC 17 September

2013. Skies were clear with a maximum air temperature

at the REAL of 27.38C at 1659 PDT (2359 UTC).

RHI scans by the REAL show a mixed layer reaching

approximately 1100m deep in the afternoon. This is an

example of a moderate wind case where the wind speed

ranges between 0 and 8ms21 and the wind direction is

approximately constant for the first half of the period but

varies after 2000 UTC. The time series of both methods

are remarkably similar for both wind speed and direction.

Correlation coefficientsR2 for the 10-min averaged wind

speed and direction between the optimized CCA and

the DL are 0.973 and 0.938, respectively.

3) STRONG WIND CASE

Figure 13 shows the time series of wind speeds and

directions, as estimated by the DL (blue) and by the

optimized CCA (green) fromREAL backscatter images

for a 12-h period starting from 1500 UTC 9 October

TABLE 5. RMS deviation of differences, linear regression variables (slope, offset), R2, number of points, and recovery percentage w.r.t.

the DL reference for the 10-min averaged wind component y (south–north), for the three specific cases and the 15 days considered for the

temporal validation.

Case RMS (m s21) Slope Offset (m s21) R2 No. points Recovery (%)

Light 0.35 0.504 0.020 0.458 64 88.9

Moderate 0.28 0.984 0.01 0.987 72 100

Strong 0.44 0.885 20.76 0.879 72 100

15 days 0.37 0.991 0.06 0.995 891 99.0

TABLE 4. RMS deviation of differences, linear regression variables (slope, offset), R2, number of points, and recovery percentage w.r.t.

theDL reference for the 10-min averagedwind component u (west–east), for the three specific cases, and for the 15 days considered for the

temporal validation.

Case RMS (m s21) Slope Offset (m s21) R2 No. points Recovery (%)

Light 0.17 0.984 0.079 0.950 64 88.9

Moderate 0.34 0.937 20.06 0.971 72 100

Strong 0.51 0.947 0.16 0.961 72 100

15 days 0.36 0.974 20.05 0.993 891 99.0
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2013. Skies were clear with a maximum air temperature

at the REAL of 24.28C at 1537 PDT (2237 UTC).

RHI scans made by the REAL show a mixed layer ap-

proximately 1 km deep. This is an example of a strong

wind case where the average wind speed is about

10ms21 (with gusts to 14m s21) and the wind direction

is approximately constant (from the northwest direction).

As in the moderate wind case, the time series of both

methods are strikingly similar for both wind speed and

direction. Correlation coefficients R2 for the 10-min av-

eraged wind speed and direction between the optimized

CCA and the DL are 0.929 and 0.968, respectively.

4) STATISTICAL ANALYSIS OF TEMPORAL

VALIDATION

Statistical comparisons between optimized CCA and

theDLare summarized inTables 4 and 5 for all three cases

(weak, moderate, and strong winds). Figure 14 presents

scatterplots for the 10-min means collected over 15 days

(891 intervals), and the corresponding statistical results are

available in Tables 4 and 5. The root-mean-square (RMS)

deviations for components u and y over 15 days are

0.36ms21 and 0.37ms21, respectively. The scatterplots

show excellent agreement between the cross-correlation

motion estimates and the DL measurements. This is con-

firmed by the slopes of the best-fit lines (0.974 for u and

0.991 for y) andR2 coefficients (0.993 foru and 0.995 for y).

The time series of Figs. 11–13 reveal that the wind

velocities obtained from the cross correlation have less

variability than the DL measurements. Figure 15 shows

scatterplots of the turbulent kinetic energy (TKE)

measured by the DL and the CCA over the 891 ten-

minute intervals. Three sets of results are presented for

the CCA, corresponding to three levels of the multigrid

estimation: 1000m 3 1000m, 500m 3 500m, and

250m 3 250m. In all three sets, the cross-correlation

method underestimated the TKE. However, as the block

size is reduced, more TKE is recovered: from’25%with

the largest blocks to ’39% with 250m 3 250m blocks.

These results support the notion that smaller block sizes

are able to capture smaller-scale velocity perturbations.

As stated in Mayor et al. (2012), estimating the wind

FIG. 14. (top) Scatterplots of 10-min averaged u and y components of the wind velocity

estimated by the optimized CCA (vertical axis) vs that estimated by the DL at 100m AGL

(horizontal axis), for 15 days, during daytime (891 intervals). The histogram distributions of

differences for the same dataset are shown in the bottom panels.
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directly from small block sizes leads to noisier results.

However, with the addition of multipass, multigrid, and

quality control, the algorithm is now able to increase the

resolution of the motion field.

b. Wind velocity fields

Two-component velocity fields can be retrieved from

the REAL backscatter images to a range of several

kilometers via application of the optimized CCA. Each

vector in the field is the result of placing the in-

terrogation window on the region of the preprocessed

backscatter intensity image surrounding the desired

vector location. Figure 16 shows an example of a strong

wind case on 3 October 2013 when the wind direction is

relatively uniform. RHI scans near this time indicate

mixing to altitudes above 1 km AGL. Mean wind speed

at 100m AGL at the location of the DL was about

13ms21. Skies were clear and the high temperature on

this day was 248C. This is an example of a case where

there are likely significant contributions from both

shear and buoyancy. Figure 17 shows an example of a

microscale vortex observed from the light wind case

(23 October 2013) discussed in a previous section. The

optimized CCA greatly improves the resolution of such

velocity structures.

c. Spatial validation

For this phase of the experiment, the DL was located

on the roof of the REAL system and operated in fixed-

beam mode pointing at 458 azimuth and 28 elevation to

estimate the radial component of the wind velocity field

at the center of the scan sector swept by the REAL.

The corresponding radial component of the wind velocity

was retrieved from the horizontal components of the

wind velocity vector estimated by the optimized cross-

correlation algorithm applied toREALbackscatter images.

The radial components of the wind velocity vectors at

458 azimuth and 28 elevation were retrieved by the al-

gorithm with all options (MP, MG, HE, ZP, and TW)

applied to image blocks (250m 3 250m) in the range

between 0.5 and 3km from the REAL system. The

REALsystem scanned the atmosphere every 17 s (between

158 and 758 azimuth at 28 elevation). The radial component

of the wind vectors as a function of time and range were

compared. This experiment was conducted in December

2013 and January 2014.

As an example, Fig. 18 shows the radial component of

the wind velocity as measured by the DL and estimated

by the optimized cross-correlation algorithm, for an 8-h

period starting at 1700UTC 8 January 2014. The intensity

of solar radiation on this day was weak due to partly

sunny skies and the low sun angle associated with the

winter season. The high temperature was about 138C.

Wind speeds at 100m did not exceed approximately

4ms21. The two radial velocity fields shown in the figure

bear strong resemblance.

Statistics on the 10-min mean radial velocities, com-

puted at different ranges, are presented in Fig. 19. These

results were computed over 8-h periods (from 1700 to

0100 UTC) for 8 days selected in December 2013 and

January 2014. It shows that R2 (Fig. 19d) remains above

0.97 until the 1.2-km range and then it decreases with the

range due to the decaying SNR for both instruments.

The scatterplot of radial velocities (Fig. 19a) indicates

that the cross correlations gradually overestimate the

radial velocities as the range increases. This is confirmed

by the histogram of velocity differences (Fig. 19b), bi-

ased toward negative values, as well as the slopes of

linear regressions (Fig. 19c). A similar trend was found

for the same dataset using a different motion estimation

method (Dérian et al. 2015). This likely indicates a slight

misalignment of both instrument beams. A mismatch in

the elevation angle would result in a difference in alti-

tude of the beams that increases with the range, thus

explaining the lower velocities measured by the DL.

5. Conclusions

This paper describes the results of a research program

that utilized two very different approaches to charac-

terize and improve the performance of the CCA as ap-

plied to elastic lidar data for remote wind estimation.

The first approach, described in detail in Hamada

(2014), used synthetic aerosol backscatter fields and

synthetic turbulent velocity fields to conduct highly

controlled numerical experiments. By using synthetic

images and velocity fields, we were able to evaluate the

significance of the various procedures included in the

algorithm on the resulting motion vectors. An opera-

tional real-time version of the optimized CCA is now

available for use with the REAL. Moreover, the syn-

thetic test results enabled us to estimate the accuracy

and precision of the technique. Results suggest that

when the turbulence is shear-generated under neutral

conditions, systematic errors dominate at slow mean

speeds (&;5m s21) and random errors dominate at high

mean speeds (*;5m s21). The systematic errors are due

to the less-than-ideal performance of the polynomial

fit that is intended to eliminate velocity quantization.

The random errors are due to the turbulence and the

resulting distortion of aerosol features. When the bound-

ary layer is driven by convection, the flow structures be-

come cellular. To understand the possible errors that occur

under these conditions, we used the flow fields of the four

elemental kinematic fluid properties. In these cases, the

flow direction changes dramatically in the interrogation
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window area and we observe that the CCA may result in

velocity estimates that are not a good measure of the

central tendency of the actual flow field. Therefore, when

the mean flow direction is nonuniform over the in-

terrogation window, such as during periods of convection

and when winds are light and variable, large departures

from area averages may occur. No other physical method

to our knowledge exists to observe a vector flow field with

such fine spatial resolution over a 250m 3 250m area in

order to test these hypotheses.

The second approach involved a field experiment.

When sufficient small-scale aerosol structures are pres-

ent, the 10-min mean wind estimates (over a set of 150h)

from the optimized CCA (for a single point within the

scan area) match those obtained from a calibrated verti-

cally profiling Doppler lidar. The RMS deviations for the

FIG. 16. Wind velocity field obtained by the optimized CCA (at 1845:07 UTC 3 Oct 2013),

superimposed on the first scan of the pair used for estimation. The turquoise circle represents

the conic section sampled by the DL.

FIG. 15. TKE of the cross-correlation wind estimates (vertical axis) vs Doppler wind mea-

surements (horizontal axis) computed from 891 intervals, each lasting 10min. The gray shading

indicates the mean wind speed measured over the interval. The three sets correspond to block

sizes of (left) 1000m 3 1000m , (middle) 500m 3 500m, and (right) 250m 3 250m.
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u and y components are 0.36ms21 and 0.37ms21, re-

spectively, with R2 above 0.99. The slopes of the best-fit

lines for the u and y components are 0.974 and 0.991,

respectively. By comparing the variance of the non-

averaged velocity components, we determined that the

CCA results in only 39% of the TKE measured by the

DL. It is important to keep in mind that the DL wind

variance is also not a truemeasurement of TKE due to its

pulse volume and scan strategy (Sathe and Mann 2013;

Sathe et al. 2011; Bingöl et al. 2009).
Overall, the results suggest that while the CCA does

exhibit strong skill at extracting motion information that

closely approximates the wind, its ability to resolve

finescale velocity structures is handicapped by the use of

an interrogation window. Its performance is also un-

reliable when the interrogation window straddles an

edge of the lidar sector scan. Implementation of the al-

gorithm proposed by Chen and Katz (2005) could

reduce or eliminate the systematic errors we observed at

low wind speeds. Alternative motion estimation algo-

rithms, such as wavelet-based optical flow described by

Dérian et al. (2015), appear to be better suited to resolve

smaller coherent structures at the microscale and are

less sensitive to the scan edges. In the future, large-eddy

simulations could be used to generate more realistic 3D

synthetic wind and aerosol data. Field experiments to

test our conclusions should include measurements nec-

essary to calculate the Obukhov length and quantify the

contributions of shear and buoyancy.
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FIG. 17. Wind velocity field obtained by the optimized CCA (at 2332:04 UTC 23 Oct 2013),

superimposed on the first scan of the pair used for estimation. The turquoise circle represents

the conic section sampled by the DL. In (top) a close-up view of a vortex. The radius of the

vortex is approximately 200m.
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APPENDIX

Nomenclature

Cov[Spq,1, Spq,2] Covariance between Spq,1 and Spq,2

d Displacement vector

di ith displacement vector neighboring d

dm Median of the eight displacement

vectors neighboring d

FFTpq,j Fast Fourier transform of the jth

interrogated signal

FFTpq,j* Complex conjugate of the fast Fourier

transform of the jth interrogated

signal

FFT21 Inverse fast Fourier transform

ki Wavenumber corresponding to the i

direction

L Size of the interrogation window

Ni Number of data points in the i

direction

p x coordinate of the interrogation

window center

q y coordinate of the interrogation

window center

rpq Normalized cross-correlation func-

tion at the interrogation window

rpq,max Value of the peak of the cross-

correlation function

R2 Coefficient of determination

S(x, y, t) Range-square-corrected lidar signal

in a 2D scan sector

Spq(x, y, t) Interrogated signal at the window

center

Spq,j(xm, yn) jth interrogated signal

tj Reference time for the jth image

u(i, j) East–west component of the wind

velocity at the coordinates (i, j)

u0(i, j) East–west component of the turbulent

perturbation at the coordinates (i, j)

ua Proportionality constant to the x co-

ordinate for the east–west compo-

nent of the wind velocityub
Proportionality constant to the y co-

ordinate for the east–west compo-

nent of the wind velocity

uc East–west component of the constant

wind velocity

y(i, j) North–south component of the wind

velocity at the coordinates (i, j)

y0(i, j) North–south component of the tur-

bulent perturbation at the co-

ordinates (i, j)

ya Proportionality constant to the x co-

ordinate for the north–south com-

ponent of the wind velocity

yb Proportionality constant to the y co-

ordinate for the north–south com-

ponent of the wind velocity

yc North–south component of the con-

stant wind velocity

w(i) 1D Tukey window (in the i direction)

w(i, j) 2D Tukey window (in the i–j plane)

Greek

a Constant that determines the width of

the cosine lobe of the Tukey window

di Grid spacing in the i direction

dt Time interval between two consecutive

images

FIG. 18. Range vs time images of radial velocity from the (top) DL and (bottom) optimized

CCA applied to the REAL backscatter images, for a 8-h period starting at 1700 UTC 8 Jan

2014. Gray shading indicates data discarded by quality control, likely associated with the ab-

sence of aerosol structures.
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si Standard deviation of the ith in-

terrogated signal Spq,i

sm Median of the neighboring residuals

s« Acceptable fluctuation level due to

the cross-correlation function

t« Threshold value for the normalized

median test

tr Threshold value of the peak of the

cross-correlation function
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