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ABSTRACT

Amotion estimation algorithmwas applied to image sequences produced by a horizontally scanning elastic

backscatter lidar. The algorithm, a wavelet-based optical flow estimator named Typhoon, produces dense

two-component vector flow fields that correspond to the apparent motion of microscale aerosol features. To

validate the efficacy of this approach for the remote measurement of wind fields in the lower atmosphere, an

experiment was conducted in Chico, California, in 2013 and 2014. The flow fields, estimated every 17 s, were

compared with measurements from an independent Doppler lidar. Time series of wind speed and direction,

statistical assessment of the 10-min averages, and examples of wind fields are presented. The comparison of

10-min averages at 100mAGL reveals excellent correlations between estimates from the Typhoon algorithm

and measurements from the Doppler lidar. Power spectra and spectral transfer functions are computed to

estimate the filtering effects of the algorithm in the spatial domain.

1. Introduction

Motion estimation is a branch in the field of computer

vision that develops algorithms to determine the ap-

parent movement of objects in sequences of digital im-

ages. Since the seminal paper by Horn and Schunck

(1981), the applications of these numerical methods

have become numerous; they play key roles in the suc-

cess of many modern technologies, including bio-

informatics, video compression, and machine vision.

These techniques are also commonly found in experi-

mental fluid dynamics, applied, for example, to particle

image velocimetry (PIV) (Adrian 2005). In contrast to

in situ measurements, which are inherently restricted

to a single point of space, motion estimation methods

are nonintrusive and provide fields or volumes of ve-

locity vectors and thus offer a broader perspective of

the flow.

Because of the abundance of images in the atmo-

spheric and oceanic sciences, motion estimation has

been practiced since before the digital age. For example,

determination of the movement of cloud or water vapor

features in satellite images was done prior to the work of

Horn and Schunck (1981) through a block-matching

approach (Leese et al. 1971). These atmospheric motion

vectors (AMV) constitute nowadays an essential com-

ponent of the observations assimilated by numerical

weather prediction models (García-Pereda and Borde

2014). Other modern applications involve, for example,

the recovery of glacier velocities (Scambos et al. 1992),

displacements resulting from landslides (Stumpf et al.

2013), surface water flows (Dugan et al. 2014), and

breaking waves dynamics (Melville and Matusov 2002).

Another application, similar to PIV and AMV, in-

volves the estimation of the 2D two-component wind

field from the apparent motion in aerosol backscatter

lidar data (Schols and Eloranta 1992). Thus far, the

motion estimation algorithms used in that context were

variations of the cross-correlation method (Mayor et al.

2012; Hamada et al. 2015, manuscript submitted to

J. Atmos. Oceanic Technol.). In this paper, a more re-

cent approach that was devised specifically for applica-

tion to fluid motion is investigated. This algorithm,

named Typhoon, is a wavelet-based optical flow esti-

mator. It was previously validated with synthetic and

real PIV images (Dérian 2012). Here, as a first step, the

validity of this wavelet-based optical flow approach in

the context of atmospheric lidar data is demonstrated.

The paper is organized as follows: Section 2 in-

troduces the motion estimation framework for the wind

Corresponding author address: ShaneD.Mayor, California State

University, Chico, 400W. First St., Chico, CA 95929.

E-mail: sdmayor@csuchico.edu

OCTOBER 2015 DÉR IAN ET AL . 1759

DOI: 10.1175/JTECH-D-15-0010.1

� 2015 American Meteorological Society

mailto:sdmayor@csuchico.edu


measurement problem and the traditional cross-

correlation algorithm. Section 3 presents the proposed

Typhoon algorithm. The input aerosol backscatter lidar

data are detailed in section 4. Finally, in section 5, esti-

mated wind fields are validated by comparisons with

remote measurements from a commercial Doppler li-

dar. Power spectra and transfer functions are calculated

to estimate the filtering effect of the proposed approach.

A list of symbols used in this paper can be found in

appendix A.

2. Wind measurement and motion estimation

a. Wind measurement strategies

Airmotion is represented by a three-component vector

and may be defined at all points in the atmosphere. The

wind is generally regarded as the vector consisting of two

horizontal components. Active remote wind measure-

ment techniques may be subdivided into Doppler and

non-Doppler approaches.

Ground-based radars and lidars typically collect data

in a spherical coordinate system. Doppler radars and

lidars directly measure only the radial (line of sight)

component of air motion. For aDoppler radar or lidar to

measure the wind, specific scanning strategies and as-

sumptions about the air motion over space and time

must be made. Wind profiling describes the use of a

remote sensor to provide a vertical profile of horizontal

wind vectors at a single location above the surface of the

earth. Alternatively, two Doppler radars or lidars, sep-

arated by some horizontal distance, may be used to

probe an area from different angles and to obtain a two-

component wind field. This approach is known as ‘‘dual

Doppler’’ (Stawiarski et al. 2013).

Non-Doppler approaches estimate wind fields from

the spatial and temporal movement of features observed

by the instrument. Eloranta et al. (1975) provided some

of the first remote wind measurements by lidar in the

lower atmosphere. Since that time, hardware and soft-

ware have advanced greatly and a small number of

validation experiments have been conducted, for ex-

ample, Mayor et al. (2012). Meanwhile, other fields—in

particular, experimental fluid dynamics—have devel-

oped similar approaches to retrieve motions. This con-

cept is also known to the computer vision community,

where it is associated with the wide family of motion

estimation techniques.

b. Fluid motion estimation: The vision approach

The idea of using the apparent motion of tracers to

infer the invisible underlying fluid flow is not new. It

‘‘could probably be traced far back in history to the first

time a person possessing the concept of velocity watched

small debris moving on the surface of a flowing stream’’

(Adrian 2005, p. 159). Many visualization methods have

been developed, such as using droplets, dye, smoke, or

shadows for the purpose of revealing fluid flow struc-

tures and dynamics (Van Dyke 1982). This led in par-

ticular to the well-known PIV techniques, which have

been used in experimental fluid dynamics for almost

30 years (Adrian 2005). Our 2D two-component wind

measurement approach fits in the motion estimation

context: the tracers are the aerosol features, visualized

by the lidar system, and themotion estimation technique

is usually the cross correlation. This configuration is very

comparable to PIV, with the important differences that

the distribution of aerosols in the atmosphere (the

‘‘seeding’’ of the flow) cannot be controlled, and that the

images are not of individual particles, but instead of a

field that approximately represents particle concentra-

tion (Held et al. 2012). In these aspects, this problem is

closer to AMV computation. An important difference is

the temporal and spatial resolutions covered by these

two approaches: typically, on the order of 15 s and 10m

for the considered lidar data versus 15min and several

kilometers for geostationary satellite imagery, respec-

tively (García-Pereda and Borde 2014).

c. Motion estimation framework

Motion estimation aims to recover the apparent dis-

placements within a sequence of images. The time and

space variations of an observable image quantity are

used to infer the underlyingmotion field occurring in the

image plane between two consecutive frames of the se-

quence. In this work, input images are the scans pro-

vided by the lidar, and the movements of the variations

of aerosol backscatter intensity are used to estimate the

wind field.

In the following, the scan domain is noted as V � R
2.

The observable backscatter intensity is noted as In(x) at

pixel x5 (x1, x2) 2 V and at discrete time tn, n 2 N. The

apparent displacement between two consecutive scans

In, In11 is a 2D vector field u:

u(x, t
n
)5

"
u
1
(x, t

n
)

u
2
(x, t

n
)

#
.

This displacement is measured in pixel units and occurs

over the time dtn 5 tn11 2 tn s. If the scan has a resolution

of dxmperpixel, then an estimation of the instanta-

neous wind velocity v (m s21) is therefore given by

v(x, t
n
)5

dx

dt
n

u(x, t
n
) . (1)
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As such, the motion is assumed to be stationary during

the time step dt.

Velocity components y1, y2 are the in-plane compo-

nents; that is, they belong to the image plane. Because of

the very low value of the elevation angle of the lidar scan

plane (typically ,68), these components coincide with

the horizontal wind components (usually denoted u, y in

atmospheric sciences). The out-of-plane component

(normal to the scan plane), which remains unestimated,

thus corresponds to the vertical component w.

The question of the accuracy of motion estimation

techniques is often raised. The answer is complex, since

it involves the data characteristics (spatial, temporal

resolutions), the information given by the visualization

method (the image content), and the underlying motion

field itself. In the current context, the later contributions

are difficult to quantify, as they depend largely on the

conditions (e.g., the presence of particulate matter, the

scales, and variability of the wind field). However, as-

suming ideal conditions and a perfect model, errors re-

lated to the resolution of data may be quantified. If

displacements are measured as integers on the image

grid, then the systematic error is 60.5 pixel, which then

gives 60:5dx/dt ms–1 for each motion component. In

practice, various interpolation techniques allow for

subpixel estimation, reducing this error. The error can

be also lowered by using a smaller dx and/or a larger dt.

However, for a given motion field, a smaller dx results in

larger apparent displacements, which can be more

challenging for estimation algorithms. Otherwise, larger

dt leads to less accurate perception of the instantaneous

velocity, since the assumption of stationarity of the

motion field is less valid over longer periods.

Any motion estimation technique features two main

aspects. The first one, known as the data model, de-

scribes the link between observations I (the aerosol

backscatter intensity) and the underlying unknown dis-

placement u. This model should take into account the

nature of observed data and its relevant dynamics. Then,

as an inverse problem, motion estimation is usually ill

posed. The second aspect is therefore the regularization,

which is required in order to close the estimation prob-

lem. The regularization may also provide information

where the datamodel fails locally. The various estimation

techniques feature different data models, regularizations,

or implementation strategies.

d. The cross-correlation algorithm, concept, and
limitations

The cross-correlation technique performs indepen-

dent local motion estimations on subregions (blocks) of

the scan domain. It consists of correlating a block of the

first scan In with a translated block of the second scan

In11; the translation vector u, which induces a correla-

tion peak, is considered to be the displacement at the

center of the block (Schols and Eloranta 1992). The

estimation problem, presented in its basic form, is

written as

"x 2 V
C
, u(x, t

n
)5 argmax

u
�

y2B(x)

[I
n11

(y1u)2m
n11

(x1 u)][I
n
(y)2m

n
(x)]

s2
n11(x1 u)s2

n(x)
, (2)

where VC � V is the set of block centers (and therefore

the set of locations of estimated vectors); B(x) is the

block centered on x; and mp(x) and sp(x) are the mean

and standard deviations, respectively, of backscatter

intensity Ip over block B(x). Note that in practice, this

cross-correlation function (CCF) is computed using the

FFT for computational efficiency.

In this case, the data model is the CCF [(2)] itself; the

regularization is implicitly given by the size of block

B(x), which should be large enough to contain reliable

information, yet as small as possible to resolve small-

scale motions. Typically, neighboring blocks overlap by

50%, so that the estimated motion field is sparse (fewer

motion vectors than pixels). Each vector is the result of a

single independent problem, which makes the CCF al-

gorithm pleasingly parallel (Mauzey et al. 2012). This

cross-correlation approach and its numerous vari-

ants have become widely used in PIV (Adrian and

Westerweel 2010); in geosciences it is often applied to

satellite imagery to retrieve, for instance, glacier veloc-

ities (Scambos et al. 1992). It is also the standardmethod

to derive AMVs (Schmetz et al. 1993; García-Pereda
and Borde 2014), and it has given good results with

aerosol backscatter lidar data, as shown in Schols and

Eloranta (1992),Mayor and Eloranta (2001), andMayor

et al. (2012).

However, this method as presented in (2) is not ex-

empt from drawbacks. First, the displacement within

an entire blockB(x) is explained by a single vector u(x),

which implies that this displacement is assumed to be

uniform (constant) over the block. The larger the

block, the less likely this assumption is to be true. Yet,

as overly small blocks may result in uncertainties due

to lack of information, ‘‘large’’ blocks are usually

preferred. This leads to the second point: as displace-

ments occurring within large blocks are likely not
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uniform, the estimated u(x) corresponds to a power-

weighted average of the apparent displacements within

the corresponding block B(x) (Hamada 2014), which

results in an oversmoothed motion field. To address

these issues, this study proposes to evaluate a recently

developed motion estimation algorithm dedicated to

fluid flows.

3. Typhoon algorithm

Early attempts with a different class of motion es-

timation methods, often called optical flow, were

conducted in 2010 on the Canopy Horizontal Array

Turbulence Study (CHATS; near Dixon, California,

2007; see Patton et al. 2011) dataset and led to prom-

ising results (Dérian et al. 2011). Since then the au-

thors developed a new version of the algorithm based

on a wavelet framework. The extensive description of

the algorithm, named Typhoon, is largely mathe-

matical and details regarding the design of the data

model the regularization can be found in Dérian et al.

(2013) and Kadri Harouna et al. (2013), respectively.

In the following, an overview of the method and the

improvements made to achieve real-time wind esti-

mation from aerosol backscatter lidar imagery are

provided.

a. Optical flow from observations to motion

The proposed approach has two major differences

with respect to the cross-correlation algorithm pre-

sented above. First, this wavelet-based optical flow

uses a global formulation: all vectors u(x) of the dis-

placement field u are estimated simultaneously by

solving a single problem, whereas the cross-correlation

approach in (2) has as many independent problems as

vectors u(x). Second, this method provides a dense

estimate—that is to say, one displacement vector at

every point x of the scan domain V, whereas the CCF

solution is usually sparse. The estimate is obtained by

minimizing a functional, similar to an energy, defined

over the whole scan domain:

u5 argmin
u

�
1

2

ð
V

[f
data

(I, u)]2 dx1
a

2

ð
V

[f
reg
(u)]2 dx

�
.

(3)

where fdata is the data model that depends on observa-

tions I and unknown displacement u, while the regula-

rization freg depends on u only. The parameter a. 0

balances the two terms and is fixed by the user.

The data model used in Typhoon is known as the

displaced frame difference (DFD):

I
n11

[x1 u(x, t
n
)]5 I

n
(x) . (4)

It is analogous to finding the displacement field u that

‘‘warps’’ an image into the next one. This model assumes

the consistency of backscatter intensity along the tra-

jectory of an aerosol feature during the time interval

(tn; tn11); in other words, an aerosol feature will present

the same intensity, the same ‘‘signature,’’ in both scans

In, In11. Therefore, any phenomena inducing a signifi-

cant change in intensity, such as turbulent diffusion or

out-of-plane motion, can possibly lead to false apparent

motions.1 Such phenomena are not uncommon, but it

can be reasonably assumed that the time scales at which

they act are significantly larger than the interscan time

step dtn, so that the DFD [(4)] remains valid. It is also

important to note that from formulation (3), the data

model is not strictly enforced. Instead, the solution

achieves a balance between trying to follow the model

on one hand and the regularization on the other—hence,

the role of the parameter a, which allows the user to give

more weight to one term over the other.

Regularization schemes usually encourage the esti-

mate u to follow some smoothness assumption. This

work uses the most simple first-order regularization,

originally introduced in Horn and Schunck (1981),

which penalizes strong velocity gradients. For each dis-

placement component ui, i5 1, 2:

f
reg
(u

i
)5 j$u

i
j5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
›u

i

›x
1

�2

1

�
›u

i

›x
2

�2
s

. (5)

Note that the square root is later cancelled by the

square in (3). If the regularization is given much more

weight than the data model [a/‘ in (3)], then the

solution that minimizes (3) moves toward a uniform

motion field (with $ui 5 0 for i5 1, 2). The regularizer

also takes precedence over the data model locally

where the latter is inefficient, for instance, within uni-

form regions of the input images. Other regularizers are

available in Typhoon, penalizing, for instance, the

vorticity or divergence of the flow, or the gradient of

vorticity, divergence; some of these schemes have

proven to be very efficient with PIV and water vapor

satellite images (Corpetti et al. 2002). However, as the

regularization becomes more complex, the associated

computational costs increase, which may reduce the

ability to achieve real-time estimation.Moreover, in the

context of aerosol backscatter lidar images, little to no

improvement brought by the use of these advanced

1 False apparent motions here refers to illusory motions of

aerosol features that do not correspond to the horizontal wind.
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schemes was found. This could be linked to the speci-

ficities of this lidar data, which will be detailed further in

section 4.

The DFD model [(4)] and the Horn and Schunck

regularizer [(5)] inserted into (3) complete the motion

estimation problem:

u(t
n
)5 argmin

u

�
1

2

ð
V

fI
n11

[x1 u(x, t
n
)]2 I

n
(x)g2 dx 1

a

2

ð
V
�

i51,2
j$u

i
(x, t

n
)j2 dx

�
. (6)

A particularity of this problem is that the DFD model

[(4)] is not linear in u, so that the whole functional is not

quadratic. This complicates the minimization process, as

the existence of a global minimum is not guaranteed.

This is another role for the regularization term: it con-

vexifies the functional as a/‘. But, as large a values

are unmanageable, to ensure a successful minimization

it is important for the solution u to lie ‘‘close’’ to the first

guess.2 This calls for the use of an incremental strategy,

often known as ‘‘multiresolution’’: the displacement

field is estimated following a coarse-to-fine process,

starting with coarse structures of large amplitudes and

progressively refining toward smaller scales. This last

point motivates the use of the wavelet framework.

b. Introduction to the wavelet framework

In signal processing, the spectral space is often used to

analyze or exhibit some properties of a given signal. The

FFT leads to a representation in terms of sine and cosine

functions of specific frequencies. Any spatial informa-

tion is lost in the process: the Fourier coefficients, which

form an equivalent representation of the input signal,

yield no information as to where their associated fre-

quency is or is not present. This is due to the fact that the

sine and cosine functions, which form the basis of the

spectral space, are very well localized in frequency but

have an infinite support in space. Conversely, looking at

the signal in the physical space does not give any in-

formation on the frequency content. The wavelet for-

malism offers a trade-off: the wavelet functions are

localized both in space and frequency; thus, they enable

access to information on the frequency content and the

spatial location simultaneously—at the cost of lower

precision. A wavelet representation of a given signal

consists of a coarse approximation of the signal, along

with several sets of details containing spatially localized

information at various ranges of frequencies. Note that

instead of frequency, the wavelet formalism prefers the

equivalent but reciprocal notion of scale.

This multiscale (or, multiresolution) representation

offered by the wavelet transform is the main motivation

to adopt wavelet bases for displacement components u1,

u2. It leads to a ‘‘natural’’ coarse-to-fine strategy suitable

to motion estimation (Dérian et al. 2013). Approxima-

tion and coarse detail coefficients are estimated first and

then finescale details are successively added until the

smallest scale is reached. Besides the multiscale frame-

work, wavelet bases also allow the representation of

arbitrary regular functions (a 3D fluid motion field

should at least be continuous). While the continuity

might not be a relevant assumption for the 2D field, a

sufficient regularity is required in order to compute the

regularizing terms presented in section 3a, which in-

volve spatial derivatives. Finally, these regularization

schemes find a relatively simple yet very accurate im-

plementation in that context (Kadri Harouna et al.

2013). Similarly to the Fourier transform, the wavelet

transform is a linear, separable3 operator, with fast al-

gorithms [fast wavelet transform (FWT)] for compu-

tational efficiency. Wavelets are also used in many

fields, from signal denoising to video compression;

Mallat (2008) discusses an extensive presentation of

the theory and applications.

Conceptually, the use of wavelet bases does not lead

to significant changes to the estimation problem [(6)].

Each motion component ui is expressed as the inverse

transform (reconstruction) of its corresponding wavelet

coefficients ci:

u
i
5W

inv
(c

i
), i5 1, 2,

where Winv denotes the inverse wavelet transform. The

set of wavelet coefficients fc1, c2g thus is the unknown to
the estimation problem.

c. Recent improvements

The original algorithm detailed in Dérian et al.

(2013) would accept square images only. If input im-

ages were rectangular, then they had to be padded to

turn them square, which increases the computational

burden. The current version has been modified to ac-

cept rectangular images.

2 It is usually the null motion field, u(x)5 0"x 2 V.

3 The 2D transform is obtained by combining two 1D transforms:

first, along rows; then, along columns.
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The main improvement is the result of redesigning

the code to run in real time. To keep up with real time,

the estimate of wind field v(tn) from scans In, In11 must

be complete by the time the next scan In12 is made

available, with the interscan time step dtn typically on

the order of 10–20 s. Since the whole motion field is

estimated simultaneously, the number of variables is

quite large: a dense estimate from 512 3 512 pixel

images represents about half a million unknowns.

Wavelet transforms lie at the core of the estimation

process. Each evaluation of the functional (6) re-

quires two inverse FWTs (to reconstruct the dis-

placement u from its coefficients) and two forward

FWTs (to compute the gradient). To achieve the

necessary reduction in computation time, the low-

level functions of the algorithm—in particular, the

wavelet transforms—were rewritten in Compute

Unified Device Architecture (CUDA) language,

which enables it to execute on NVIDIA’s graphics

processing units (GPUs). GPUs designed for scien-

tific computing rely on several thousands of small

computing units, thus providing massive paralleliza-

tion capabilities. The CUDA version of Typhoon

running on an NVIDIA GeForce GTX Titan is 10–

100 times faster than the original version (Mauzey

et al. 2014) and is sufficient to meet the real-time

requirements.

4. Application to aerosol backscatter data

The results presented hereafter have been obtained

from data collected by the Raman-Shifted Eye-Safe

Aerosol Lidar (REAL) (Mayor and Spuler 2004; Spuler

and Mayor 2005; Mayor et al. 2007; Spuler and Mayor

2005) in 2013 and 2014 in Chico, California. The REAL

is a ground-based scanning, elastic backscatter lidar

operating at a wavelength of 1.54mm, with a pulse en-

ergy typically between 120 and 170mJ, a pulse rate of

10Hz, and a pulse duration of 6 ns. It employs 40-cm-

diameter optics and an analog direct detection receiver.

The backscatter signal is sufficiently strong from a single

pulse that averaging overmultiple pulses is not required.

This section describes the input scan data as well as the

preprocessing steps.

a. Data preprocessing

Before motion estimation takes place, the raw signal

delivered by the REAL must be preprocessed. Lidar

data are sampled on a polar grid, with the lidar at the

origin. Each scan is composed of shots, with a shot

being a 1D array of backscatter samples, uniformly

spaced along the range r every 1.5m, collected at a given

angular position u from a single laser pulse.

The raw backscatter intensity Iraw(r, u) corresponds to

the actual backscatter signal b(r, u) and an additive

noise «(r, u),

I
raw

(r, u)5b(r, u)1 «(r, u) .

The noise « combines contributions from the atmo-

sphere and the instrument, and can be modeled by a

random variable that follows a normal distribution of

mean mu and standard deviation su. Values of mu and su

change slightly from one shot to another, hence their

dependency in u; they can be estimated for each shot

from background data. As explained in Mayor et al.

(2012), first the noise mean is subtracted:

I
0
(r, u)5 I

raw
(r, u)2m

u
5b(r, u)1 «

0
(r, u) ,

with «0(r, u)5 «(r, u)2mu the now-centered random

noise. The raw signal-to-noise ratio (SNR) is computed

at that point:

SNR
raw

(r, u)5
I
0
(r, u)

s
u

. (7)

Shots are then multiplied by the square of the range to

compensate for the one-over-range-squared decay of

the backscatter b:

I
r2
(r, u)5 r2I

0
(r, u)5 r2b(r, u)1 r2«

0
(u) .

Note that the noise amplitude now increases as the

square of the range. For optimal results, it is then es-

sential to discard irrelevant noisy data, which is dis-

cussed further.

After conversion to decibels, shots are filtered in the

range dimension. The low-pass median filter of length 7

points (10.5m) removes high-intensity spikes typically

caused by hard targets, such as birds and insects, while

the high-pass median filter of length 333 points (500m)

removes the very large structures to reveal local fluctu-

ations. Figure 1 presents an example of preprocessed

backscatter data (Fig. 1a), along with the corresponding

raw SNR [(7)] (Fig. 1b).

b. Detecting coherent features

Two different aspects complicate the motion estima-

tion process. First, because of the nature of backscatter

data, the raw SNR [(7)] decays as one-over-range-

squared. Typically, for the REAL operating in Chico,

the SNR resulting from a single laser pulse drops below

5 at r 5 3km. Such high levels of noise in the far range

are challenging for optical flow. Second, for the purpose

ofmotion estimation, a good SNR in the near range does

not necessarily imply useful information. For instance,
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coherent features can be absent from a region of the

scan, yielding much uncertainties as to the underlying

wind field in that region.

To maximize the quality of the results, the scan areas

presenting no coherent aerosol features are discarded.

Because of the regularization schemes provided by

optical flow (section 3a), wind vectors estimated over

noisy areas could be relevant. However, judging so

proves to be difficult, as often even a basic visual con-

firmation is impossible in noisy regions. Hence, it is

safer to simply discard the noisy image data before

motion estimation.

To detect the presence of coherent aerosol features,

the image SNR is used. It is defined as the ratio of the

local standard deviation of coherent signal sb(r, u) to

the local standard deviation of noise s«:

SNR
img

(r, u)5
s
b
(r, u)

s
«
(r, u)

. (8)

This ratio is estimated from the autocovariance function

of preprocessed data I(r, u). For every point (r, u), the

autocovariance Cl is computed along the range from

data in (r2 l/2; r1 l/2). Then, the local variance of co-

herent signal is given by the average of coefficients at lag

1 and lag 21:

(s
b
)2 5 0:5[C

l
(21)1C

l
(1)] ,

while the local variance of noise is obtained from the 0-lag

coefficient and sb:

(s
«
)2 5C

l
(0)2 (s

b
)2 .

FIG. 1. Example of preprocessing applied to a horizontal scan collected at 2314:10 UTC 3 Oct 2013. (a) Pre-

processed backscatter data. (b) Raw SNR [(7)], revealing a 1/r2 decay. (c) Image SNR [(8)] computed using a 384-m

window. (d) Valid data domain computed from image SNR. Motion is estimated in the white area only, excluding

far-range noisy regions. The far-range boundary [(9)] of this area is also shown in (a) as a white line. An example of

estimated vector flow field has been added to the valid area in (d), decimated for the sake of visualization.
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An example of image SNR is shown in Fig. 1c. A 256-

point window was used to compute the autocovariance,

corresponding to l5 384m.

From the image SNR, a valid data domain is com-

puted for each scan. It is assumed that the best data are

in the near range; therefore, the valid domain is simply

defined by a far-range boundary. For each shot (azimuth

u), this far-range boundary is given by the smallest range

R(u) above which the image SNR remains below a

threshold t fixed by the user:

"u, R(u)5 min
R

fR:"r.R, SNR
img

(r, u), tg . (9)

Finally, a low-pass median filter of width 25 points and a

Gaussian filter of parameter s5 2 points are applied to

the set of R(u), to exclude small isolated features and to

smooth the boundary. An example of mask representing

the valid data domain is shown in Fig. 1d, using t5 3.

c. Correction of image distortions

A lidar scan does not correspond to an instantaneous

view of the aerosol distribution. The shots that compose

the scan are acquired sequentially. In the event of high

wind speeds, this leads to apparent distortions of the

aerosol features in the lidar images, which in turn causes

the estimated motion to be biased. This issue was first

noted by Sasano et al. (1982), who proposed an iterative

correction method. Assuming that the aerosol features

are transported without deformation by a uniform wind

vector, scans can be warped to reconstruct an ap-

proximated instantaneous view of the aerosols, thus

TABLE 1. Main parameters of DL and REAL measurements for

the temporal and spatial validation experiments.

Temporal validation Spatial validation

Doppler REAL Doppler REAL

Scan type VAD PPI STARE PPI

Azimuth (8) (0; 90; 180; 270) (215; 45) 45 (15; 75)

Elevation (8) 45 4 2 2

Range (km) — (0:5; 5:5) (0; 5) (0:5; 5:5)

Components 2 2 1 2

dx (m) — 8 48 8

dt (s) 15 6 1 17 1 17

FIG. 2. Illustration of the experimental design for the temporal validation of motion estimation vectors. (a) Short sequence of three

consecutive PPI scans collected on 14 Oct 2013 by the REAL. The displayed area is a close-up centered on the Doppler lidar (white

marker) used for validation. The copper shading indicates the intensity (dB) of aerosol backscatter. A large aerosol feature is being

advected southeast and passes over theDL. (b),(c) Velocity fields estimated byTyphoon (black arrows) from each pair of scans; they were

decimated by a factor of 6 along both dimensions for the sake of visualization. Measurements from the DL (red arrows) at 100m AGL

show good agreement with estimates, with a wind speed of ’5.4m s–1.
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improving the accuracy of motion estimation. In this

study, implementation proceeds as follows for a given

scan pair:

1) Estimate the displacement field u from the pair of

scans with the Typhoon algorithm.

2) Convert to velocity field v using (1).

3) Correct both scans for distortions using wind field v,

following Sasano et al. (1982). The time of the beam

at the center of the scan is used as the reference time.

4) Repeat steps 1–3 until mean wind speed jvj changes
by either less than 1% or less than 0:25dx/dt. Typi-

cally, it requires two to three iterations.

The correction step (step 3) is carried on the polar grid

data. After correction, backscatter data are no longer

known on a regular polar grid but instead are at scat-

tered locations.

d. Cartesian gridding

After preprocessing, masking, and correcting for dis-

tortions, the backscatter data are interpolated on a

Cartesian grid of spacing dx5 8m. It is possible to per-

form themotion estimation directly on the original polar

grid; however, as mentioned above, the correction step

destroys the regularity of the mesh. Fast interpolation

on large sets of scattered data can be challenging,

considering real-time requirements. In this work, a

CUDA implementation of nearest-neighbor inter-

polation was used.

5. Validation

A field experiment was conducted in Chico from mid-

September 2013 to mid-January 2014, to validate the

wind fields recovered by Typhoon. Parameters of the

algorithm used for the following results are listed in

appendix B. A Doppler lidar (DL) was deployed to

provide independent wind measurements. It is a pulsed

heterodyne detection Doppler lidar commercialized by

HALO Photonics under the name Streamline (Pearson

et al. 2009). This model was previously certified against

cup anemometer measurements (Axel and Ailt-Wiard

2014), and showed very good agreement to radar wind

profiler and radiosonde (Päschke et al. 2014). The DL

has the serial number 0811–35 and was built in No-

vember 2011. It operates at a wavelength of 1.5mm, a

pulse energy of 20 mJ, a pulse rate of 15 kHz, and a pulse

duration of 150ns. DL data were filtered following the

manufacturer’s recommendations, retaining only points

for which the minimum SNR intensity . 1.01.

Since it is not possible to retrieve a 2D two-

component wind field using a single DL, two different

experimental configurations were investigated.

d Temporal validation. The DL was located at 1523-m

range, 158 azimuth from the REAL and operated in

vertical profiling mode. Data from this configuration

enable comparisons of time series of two-component

wind velocities at the DL location. This phase of the

FIG. 3. Distribution of days in terms of valid image SNR (section

4b) in a 50-m radius around DL location (horizontal axis) vs mean

wind speed measured by the DL at 100m AGL (vertical axis),

during daytime. Days for which time series are presented (Figs. 6–

8) are represented with a black diamond. A total of 57 days are

considered, of which 9 have less than 60% valid SNRimg and are not

visible here. The 15 days having more than 85% valid SNRimg were

investigated for the statistics shown in Fig. 9.

FIG. 4. Wind field obtained by Typhoon at 1845:07 UTC 3 Oct

2013, superimposed on the first scan of the pair used for estimation.

Wind velocity was’14 m s–1. The motion field was decimated along

both dimensions by a factor of 24. The turquoise circle represents the

conic section sampled by the DL during the VAD scan.
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experiment was conducted during September and

October 2013.
d Spatial validation. The DL was located on the roof of

the REAL container and operated in fixed-beam

mode, staring at the center of the sector scan area

swept by the REAL. This configuration enables one to

compare radial wind velocity components along the

DL line of sight. Data for this second phase of the

experiment were collected in December 2013 and

January 2014.

The main parameters used by both systems during these

two experiments are summarized in Table 1.

a. Temporal validation

In this experiment, the REAL scans between 2158
and 458 azimuth, with a 48 elevation, every 17 s. This

places the scan at 100m AGL at the range of the DL.

TheDL operates in vertical profiling mode (VAD scan),

providing a profile of two-component horizontal wind

vectors about every 15 s.

A typical example of aerosol motion estimation is

presented in Fig. 2. It features a close-up of two motion

fields estimated from three successive position plan in-

dicator (PPI) scans. The flow is relatively uniform, and

can be visually identified due to a large aerosol feature

that moves toward the southeast. The DL wind vectors

at 100m AGL are displayed for comparison and show a

good agreement with the Typhoon estimates.

In this paper, an effort is made to establish the po-

tential of the Typhoon algorithm when applied to

aerosol backscatter lidar data. However, quality of the

data depends upon the performance of the instrument

and the state of the atmosphere. Therefore, we selected

FIG. 5. Wind field obtained by Typhoon at 2332:04 UTC 23 Oct 2013, superimposed on the

first scan of the pair used for estimation. The top panel shows a close-up of a vortex with radius

’200 m. The vector field was decimated along both dimensions by a factor of 6 and 12 for the

top and bottom panels, respectively. The turquoise circle represents the conic section sampled

by the DL during the VAD scan.
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the days presenting the best potential for this validation

among data collected in Chico from mid-September to

mid-November 2013, with the expectation that future

advances in hardware will lead to increases in data

quality and availability. First, because of the local typical

conditions in Chico, aerosol backscatter imagery is

much better for this application during the daytime than

during nighttime. Therefore, this study was restricted to

daytime only. Second, the percentage of valid back-

scatter data (section 4b), during daytime, in a 50-m ra-

dius around the DL was computed. These values are

plotted against the mean wind speed measured by the

DL the same day in Fig. 3. With a sufficient spatial dis-

tribution of aerosol features, dense two-component wind

fields can be delivered up to several kilometers in range.

Figure 4 shows an example of such wind field on a day

with high speed and uniform direction, with vectors

available out to 4-km range. The low-SNR area in the far

range was dynamically excluded. Figure 5 presents a view

of a’200-m vortex, illustrating the ability of Typhoon to

extract coherent structures at intermediate scales.

Three specific cases are described below: light, mod-

erate, and strong wind conditions. These days are rep-

resented by solid diamonds in Fig. 3. For each case, time

series of instantaneous and 10-min averaged wind

measurements are presented. The 10-min averages are

the reference measures for instrument validation in the

wind power industry (Brower 2012). Then, statistics on

10-min averages for the 15 days having more than 85%

valid data are presented.

The VAD scan strategy used by the DL assumes that

the wind is uniform throughout the swept area (Mann

et al. 2009, 2010; Sathe et al. 2011; Sathe and Mann

2012); in this case this region is a disc of about 100-m

radius, represented by a turquoise circle in Figs. 4 and 5.

To compare results of the study to the DL measures,

instantaneous Typhoon estimates are averaged in space

over a similar sized area centered on the DL location.

Occasionally, the estimation may fail and result in

obvious outliers. Those outliers can be detected and

removed under the assumption of temporal coherence

of the wind field. The normalized median test, com-

monly used in PIV (Adrian and Westerweel 2010), was

implemented. Similar concepts are used with radar wind

profilers (Weber et al. 1993). Within each 10-min win-

dow, the median wind vector vm is computed, as well as

the residuals r(v)5 jvm 2 vj for each vector v of the

window. Vectors for which the residual r(v) is twice

larger than the median of residuals rm are discarded.

1) LIGHT WIND CASE

Figure 6 shows thewind speed and directionmeasured

by the DL at 100m AGL and estimated by Typhoon

for a 12-h period starting at 1500 UTC 23October. It is a

light wind episode with speeds remaining below 3ms–1

and variable direction. Estimates are missing over a

period approximatively covering 1500–1700 UTC. This

is due to the coherent feature detection presented in

section 4b: no significant features were present in the

region of interest at that time; therefore, no motion es-

timates are available. Then, between 1700 and 1800UTC,

Typhoon speed and direction estimates are in system-

atic error. Visual inspection of the aerosol imagery

reveals the mixed layer growing with the entrainment

zone passing through the altitude of the intercompar-

ison. It appears that the plumes and wind shear in the

entrainment zone result in false apparent motions that

bias themotion estimations. Later, two reversals of wind

FIG. 6. Times series of (top) wind speed and (bottom) direction as measured by the DL

(blue) and estimated by Typhoon (orange), for a 12-h period starting at 1500 UTC 23 Oct

2013 (light wind case). Light plus (1) markers are instantaneous values; darker lines are the

10-min rolling averages. The rapid change in direction is the signature of the vortex presented

in Fig. 5.
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direction occurred at 2230 and 2330 UTC that corre-

spond to the passage of a vortex of diameter ’200m

over the region of interest (see also Fig. 5 for a spatial

visualization). This microscale circulation resembles

those that have resulted from large-eddy simulation of

convective boundary layers (Schmidt and Schumann

1989; Kanak 2005; Sullivan and Patton 2011). Correla-

tion coefficients R2 for the 10-min averaged wind com-

ponents are 0.951 and 0.600 for u and y, respectively.

Excluding the 1700–1800 UTC period with false ap-

parent motions, R2 values increase to 0.966 and 0.866,

respectively.

2) MODERATE WIND CASE

Figure 7 shows wind speed and direction measured by

the DL at 100m AGL and estimated by Typhoon for a

12-h period starting at 1500 UTC 17 September. This

wind episode features speeds ranging from 0 to 10ms–1

and direction mostly stationary except for a 2-h fluctu-

ating episode (corresponding to the lowest wind speeds).

Wind speed is underestimated at two occasions, both

corresponding to rapid and large changes in direction

around 2230 and 2300 UTC. Otherwise, both series of

data are in very good agreement. This is confirmed by

the 10-min averaged wind components: correlation co-

efficientsR2 are 0.979 and 0.991 for u and y, respectively.

3) STRONG WIND CASE

Figure 8 shows wind speed and direction measured by

the DL at 100m AGL and estimated by Typhoon for a

12-h period starting at 1500UTC 9October. It is a strong

wind episode with speeds up to 16m s–1 and very con-

sistent flow from the northwest direction. Both time

series are again in very good agreement. Correlation

FIG. 8. Times series of (top) wind speed and (bottom) direction asmeasured by theDL (blue)

and estimated by Typhoon (orange), for a 12-h period starting 1500 UTC 9 Oct 2013 (strong

wind case). Light plus (1) markers are instantaneous values; darker lines are the 10-min rolling

averages.

FIG. 7. Times series of (top) wind speed and (bottom) direction asmeasured by theDL (blue)

and estimated by Typhoon (orange), for a 12-h period starting at 1500 UTC 17 Sep 2013

(moderate wind case). Light plus (1) markers are instantaneous values; darker lines are the 10-

min rolling averages.
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coefficients R2 for the 10-min averaged wind compo-

nents are 0.984 and 0.929 for u and y, respectively.

4) OVERALL CONSIDERATIONS

Scatterplots of 10-min averaged wind components

measured during the daytime4 for the 15 ‘‘best’’ days

(Fig. 3) are presented in Fig. 9. They show overall ex-

cellent agreement of Typhoon estimates with DL mea-

surements at 100mAGL: correlation coefficients R2 are

0.995 and 0.997 for u and y, respectively. Detailed sta-

tistics on u and y are available in Tables 2 and 3. In terms

of wind speed, a linear regression gives a slope of 1.000

with an offset of 20.10ms–1, and the R2 coefficient is

0.991. Regarding the wind direction, the offset is 1.18 and
the R2 coefficient is 0.944.5 This ’18 offset observed for

the direction corresponds to the precision at which the

DL was oriented during its deployment. The root-mean-

square error (RMSE) between Typhoon’s estimates and

the DL observations is 0.29m s–1 on both on u and

y components. This is slightly higher than the expected

systematic error of 0:5dx/dt ’ 0:24 m s–1, which assumes

perfect data and model (section 2c). The few remaining

outliers mostly correspond to false apparent motions,

typically occurring at the beginning and end of the day as

the boundary layer depth evolves.

From the time series shown in Figs. 6–8, it appears the

variability of the wind speed obtained byTyphoon is less

than that measured by the Doppler. Figure 10 is a scat-

terplot of turbulent kinetic energy (TKE) as measured

by the Doppler and Typhoon over 10-min intervals. A

linear regression suggests that the TKE fromTyphoon is

about 50% smaller than the Doppler’s. This could be

linked to the fact that Typhoon measures apparent dis-

placements, which are later converted to velocities

(section 2c). Small-scale velocity structures, either in

time or space, are less accurately perceived. Using a

FIG. 9. (a),(b) Scatterplots of 10-min averaged wind components u and ymeasured by theDL

at 100mAGL (horizontal axis) vs estimated by Typhoon (vertical axis), combining the 15 days

having .85% valid image SNR during daytime (Fig. 3)—892 points total. (c),(d) Distribution

of differences for the same dataset.

4 ‘‘Daytime’’ is arbitrarily considered to be 1500–0100 UTC.
5When dealing with circular data such as angles, the slope for the

linear regression should be fixed to 1. Only the offset and R2 are

computed; see, for example, Fisher (1995).
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faster scan rate is likely to improve the results.

Nevertheless, Typhoon performs better than the cross-

correlation technique: the optimized algorithm pre-

sented in Hamada et al. (2015, manuscript submitted to

J. Atmos. Oceanic Technol.) recovers 39% of the TKE

on the same dataset.

b. Spatial validation

During this phase of the experiment, the DL was

collocated with the REAL. The REAL swept between

158 and 758 azimuth at 28 elevation every 17 s. The DL

held its beam fixed at 458 azimuth and 28 elevation,

measuring the radial velocity component as a function of

range and time; see Fig. 11. DL measurements were

integrated over 1 s, with a range gate of 48m. The tem-

poral resolution of DL measurements is therefore much

finer than that of the REAL flow fields, and conversely

for the spatial resolution (see Table 1).

Instead of holding the DL beam fixed, a PPI sweeping

strategy identical to the REAL’s could have been used,

thus allowing the comparison of radial components over

the whole scan domain. However, two arguments sup-

port the choice of a fixed beam:

d With a moving beam setup, the integration time for

DL measurements was reduced to less than 0.1 s. This

would cause the SNR to decrease very rapidly. Typi-

cally in Chico the maximum range with useful data

would be on the order of 1500m, significantly below

that of the REAL’s maximum range.
d The radial velocity fields collected by the DL would

suffer from the same distortions as the backscatter

data (section 4c), so correcting these distortions would

be challenging.

The data used for the spatial validation were recorded

in December 2013 and January 2014. In Chico, the days

are shorter and the air is cleaner during this season than

in the autumn when time series data were collected.

Both the DL and the REAL are affected. Data are of

lower quality than shown for the temporal validation.

The availability of 10-min averages falls below 50%

after 3 km for both instruments and at 5 km it is below

5%. Therefore, the analysis is restricted to the first 3 km.

Furthermore, it should be noted that the prevailing wind

direction during this time over Chico is northwesterly.

At 458 azimuth, the line-of-sight component corre-

sponds mostly to the cross-stream, turbulent wind per-

turbations. In these data, its magnitude remains mostly

below 3m s–1. Figure 12 shows a comparison of radial

velocity measured by the DL and extracted from the

two-component fields obtained by Typhoon for an 8-h

period starting at 1700 UTC 8 January 2014.

To compute statistics, radial velocities were averaged.

First, the spatial resolutions are matched by averaging

Typhoon velocities in space according to DL range

gates; then, 10-min time averages are computed at every

range. A scatterplot of these 10-min averages is pre-

sented in Fig. 13, along with linear regression slopes, R2

FIG. 10. Scatterplot of theTKEmeasured over 10-min intervals, by

theDL at 100mAGL (horizontal axis) vs estimated by the proposed

method (vertical axis)—892 points total. The gray shading indicates

themean wind speedmeasured over the interval. A linear regression

(dashed line) gives a slope of 0.49 and an offset of 20.03.

TABLE 2. RMS error, linear regression variables (slope, off-

set), correlation coefficient R2, number of points, and recovery

percentage w.r.t. DL reference for the 10-min averaged wind

component u (west–east) for the temporal validation results

(section 5a).

Case

RMSE

(m s–1) Slope

Offset

(m s–1) R2

No. of

points Recovery (%)

Light 0.17 1.047 20.01 0.951 61 84.7

Moderate 0.29 0.974 20.05 0.979 72 100

Strong 0.33 0.938 0.32 0.984 72 100

15 days 0.29 0.989 20.03 0.995 892 99.1

TABLE 3. RMS error, linear regression variables (slope, off-

set), correlation coefficient R2, number of points, and recovery

percentage w.r.t. DL reference for the 10-min averaged wind

component y (south–north) for the temporal validation results

(section 5a).

Case

RMSE

(m s–1) Slope

Offset

(m s–1) R2

No. of

points Recovery (%)

Light 0.27 0.660 20.02 0.600 61 84.7

Moderate 0.23 0.999 0.00 0.991 72 100

Strong 0.34 0.897 20.72 0.929 72 100

15 days 0.29 1.001 0.03 0.997 892 99.1
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coefficient, and distribution of differences. These values

were obtained from 8-h periods (1700–0100 UTC) for

8 days in December 2013 and January 2014. The R2

coefficient (Fig. 13d) decreases with the range and this is

expected, as both instruments are affected by the grad-

ual reduction in SNR. The R2 remains above 0.95 over

the first 1.5 km and then slowly decreases to about 0.8

at 3 km. The overall R2 is 0.928. While the relation

between Typhoon and DL velocities remains linear,

the slope (Fig. 13c) increases with the range, from

about 0.95 at 0.5 km to 1.3 at 3 km. Velocities obtained

by the cross-correlation method show a similar trend

(Hamada et al. 2015, manuscript submitted to J. Atmos.

Oceanic Technol.). This leads to a theory that these

discrepancies are due to a mismatch in the actual el-

evation angles of the beams during this phase of the

experiment, especially considering the unbiased results

of the temporal validation. At a lower elevation angle

and therefore lower altitude, the DL would measure

lower velocities.

c. Spectral analysis

In this section, temporal and spatial power spectra of

the velocity components produced by Typhoon are pre-

sented, with the objective of characterizing the filtering

effect of the algorithm—in particular, in the spatial do-

main. The velocity data analyzed were collected during

the daytime and within the turbulent lower atmospheric

FIG. 11. Illustration of the experimental design for the spatial validation ofmotion estimation vectors. (a) Subsets

of two consecutive PPI scans collected on 8 Jan 2014 by the REAL. The displayed area is a close-up centered on the

DL line of sight at 458 azimuth (dashed white line). The copper shading indicates the intensity (dB) of aerosol

backscatter. A large aerosol feature is being advected north. (b) The velocity field (black arrows) estimated by

Typhoon from these two scans; the vector fieldwas decimated by a factor of 15 along both dimensions for the sake of

visualization. The color shading in the background indicates the corresponding radial velocity. (c) Comparison of

the radial velocitiesmeasured by theDoppler (black line) and extracted from the two-component field estimated by

Typhoon (red line), along the DL line of sight.
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boundary layer.6 Therefore, an inertial subrange in the

power spectra of the actual velocity field is expected.

The spectra are computed in natural coordinates to

account for the anisotropy of atmospheric boundary

layer turbulence. The west–east and south–north wind

velocity components are projected, according to the

mean wind direction, as streamwise (us) and cross-

stream (yn) components, such that us carries the mean

speed and yn has a null mean. The mean wind vector is

defined accordingly to the investigated dimension, ei-

ther in time or space. The spectra are finally averaged

together according to themean wind speed, using bins of

0–4, 4–8, 8–12, and 12–16ms–1, in order to exhibit their

evolution with increasing wind speed and turbulent ki-

netic energy. The resulting power spectral densities (S)

are multiplied by frequency ( f) or wavenumber squared

(k2), so that an inertial subrange would appear as a22/3

slope and white noise would appear as a 11 slope.

1) TEMPORAL POWER SPECTRA

During the experiment, the REAL collected PPI

scans every 17 s and one RHI scan every 15min. The

RHI scan resulted in a 30-s interruption of the PPI scan

sequence. The scan strategy of the DL provided ver-

tical profiles of horizontal winds every 15 6 1 s. Since

the FFT requires data points at a uniform time in-

terval, the Typhoon and DL wind measurements were

interpolated to a 5-s time series. From the 5-s time

series data, we computed power spectra over consecutive

10-min intervals. The 10-min mean wind vector was used

for the projection in natural coordinates and the binning

of spectra, as defined above. The resulting spectra have

a Nyquist frequency of 0.029Hz (34-s period) for the

Typhoon velocities and 0.033Hz (30-s period) for theDL.

The lowest frequency is 1.67 3 10–3Hz (10-min period).

The spectra are presented in Fig. 14. Those from the

Doppler lidar are consistently higher than the spectra

from Typhoon; this is consistent with our observation

that the TKEmeasured fromDoppler velocities is larger

than those from Typhoon (Fig. 10). The temporal spectra

appear to becomeflatter as themeanwind speed increases.

We hypothesize that this may be caused by the challenges

that both Typhoon and the DL face under windy condi-

tions. For the DL, the increased variability of the actual

wind velocity field in theVAD sample area results inmore

error in the horizontal wind vector estimate. The increased

error appears as noise at these time scales and flattens the

spectrum. For Typhoon, windy conditions result in larger

horizontal displacements between scans and faster de-

formation of aerosol coherent structures.

2) SPATIAL POWER SPECTRA

An independent observation of the two-component

2D velocity field does not exist for comparison with

those produced byTyphoon. A dual-Doppler lidar setup

could have provided it, but it would have doubled the

cost and complexity of the project. Therefore, to in-

vestigate the integrity of the vector flow fields in space,

spatial power spectra are considered.

A 1-km-diameter circular area is considered, cen-

tered on the DL at 1.53-km range. All of the vectors

within this area (from a single flow field in time) are

FIG. 12. Comparison of radial wind component at 458 azimuth and 28 elevation (top) mea-

sured by the DL and (bottom) estimated by Typhoon, as a function of time (horizontal axis)

and range (vertical axis), for an 8-h period starting at 1700 UTC 8 Jan 2014. Gray shading

indicates missing or discarded data.

6 RHI scans collected every 15min by the REAL during the

15 days included in the analysis show that the maximum convective

boundary layer height, which typically occurred in the afternoon,

ranged from 300 to 1200m AGL.
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used to compute the spatial mean wind vector, which

then defines a natural coordinate system. Vectors of

the flow field are interpolated on a 1283 128 point grid

(1024m 3 1024m) that is centered on the DL and

aligned with the natural coordinate system, and then

projected as streamwise (us) and cross-stream (yn)

components. This operation was performed for each

flow field independently and resulted in 30 092 flow

fields over 15 days. At 48 elevation, the 1024m 3
1024m area covers a range of altitudes from about 50

to 150m AGL. A possible impact of this is that the

turbulence statistics within this sloped domain are

slightly inhomogeneous. Nevertheless, for each com-

ponent us, yn, the 2D power spectral densities com-

puted by FFT for each flow field are averaged together

according to the mean spatial wind speed. Finally, sli-

ces of the resulting 2D power spectra were extracted

along the streamwise and cross-stream directions. This

results in four 1D spectra for each wind speed bin: along

the streamwise and cross-stream directions, for each of the

streamwise and cross-stream components. The Nyquist

wavenumber is k/2p5 0:0625m–1 (16-m wavelength); the

lowest wavenumber is 9.77 3 10–4m–1 (1204m).

The spectra in the top row of Fig. 15 show the TKE

increasing as expected as a function of wind speed.

Each spectrum has a maximum amplitude at low

wavenumbers. We hypothesize that the peak corre-

sponds to one over the Eulerian length scale and is within

the energy-containing range (Kaimal and Finnigan 1994).

However, the spectra are steeper than k22/3. We attribute

this to two factors. The first is the likely absence of

aerosol features at all scales and all locations in the scan

area at all times. The second is the regularization used in

Typhoon, which favors a smooth motion field, especially

as the estimation reaches the smallest scales.

A transfer function describes the ratio of two spectra

and, in the present work, represents the attenuation of

the actual wind field caused by the motion estimation

as a function of wavenumber. A highly idealized spec-

trum is constructed to serve as the reference. This is

done by first locating the maximum of each mean spatial

spectrum shown in Fig. 15. We assume that the observed

FIG. 13. (a) Scatterplot of 10-min averaged radial wind component measured by the DL (hori-

zontal axis) vs estimated byTyphoon (vertical axis). Color indicates the range from blue (0.5 km) to

red (3 km). (b)Histogramof differences. (c) Slopeof linear regression as a function of range. (d)The

R2 coefficient as a function of range. Dashed red lines indicate overall slope and R2 values.
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power at wavenumbers smaller than the peak in the

spectra is accurately captured by the algorithm and

serve as a proper approximation of the power at those

large scales. For scales smaller than the peak, we ex-

trapolate by a power-law dependence through the higher

wavenumbers that mimics the inertial subrange (a k22/3

spectrum). The transfer functions are then given by the

ratio of the observed mean spectra over the idealized

spectrum and are presented in the bottom row of Fig. 15.

The higher the wind speed, the more energy is missing at

FIG. 14. Temporal spectra for (left) streamwise component us and (right) cross-stream

component yn obtained by Typhoon (solid lines) and the DL (dashed lines). The shadings from

light to dark gray correspond to wind speed ranges of (0;4), (4;8), and (8;12) m s21. The dotted

line represents the 22/3 slope of the inertial subrange predicted by theory.

FIG. 15. (top) Slices of 2D power spectral density and (bottom) corresponding transfer functions for the streamwise component u in the

(a) streamwise and (b) cross-stream directions, and the cross-wise component y in the (c) streamwise and (d) cross-stream directions.

The shadings from light gray to black correspond to wind speed ranges of (0;4), (4;8), (8;12) and (12;16) m s21. The dotted line represents

the 22/3 slope of the inertial subrange predicted by theory.
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small scales. The ratio typically drops below 50% at scales

of ’100m (k/2p’ 0:01m–1) for the highest wind speeds

and ’75m for the lowest wind speeds.

6. Broader perspectives and conclusions

In a recent paper by Sathe and Mann (2013, p. 3162),

they conclude that ‘‘Non-coherent detection may also

provide possible new ways to estimate atmospheric turbu-

lence, but to our knowledge it does not, so far, challenge the

capabilities of coherent Doppler lidars.’’ In this paper, we

have 1) introduced a new motion estimation method, 2)

made the first direct comparisons of the ‘‘non-Doppler

motion estimation approach’’ with Doppler lidar, and 3)

computed transfer functions to estimate the filtering effect

of the approach. The new motion estimation method re-

solves finer spatial-scale flow details than the traditional

cross-correlation algorithm (Hamadaet al. 2015,manuscript

submitted to J. Atmos. Oceanic Technol.). The comparisons

in the time domain reveal excellent correlation in terms of

10-min averages, which are close, for example, to standards

expected of commercial floating lidars (CarbonTrust 2013).

However, the proposed approach still underestimates the

TKE by about 50%of what is observed byDoppler lidar. It

is important to keep in mind that the Doppler also

provides a filtered version of the actual flow field.

Two horizontal components are required for wind speed

and direction. The proposed approach delivers dense two-

component wind fields from a single lidar, whereas a single

Doppler only produces a single component. In addition to

wind resource assessment, wind fields such as delivered by

Typhoon from REAL imagery enable the visualization

and investigation of meteorological phenomena, such as

vortices and fronts. They also open the possibility of

studies in the Lagrangian reference frame, and the track-

ing of flow structures or aerosol features.
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APPENDIX A

Mathematical Symbols

The following symbols have been used in this paper:

d " for all;
d � subset of;
d 2 in (belonging to); and
d N,R are the sets of natural and real numbers, respectively.

APPENDIX B

Parameters of Typhoon

Unless specified, results were obtained using the fol-

lowing parameters for Typhoon:

d version: cuTyphoon 1.0;
d wavelet basis: Daubechies, 10 vanishing moments;
d wavelet scales: eight detail scales considered and

estimated;
d pyramid steps 51, scaling factor 5 50%;
d data model: DFD, smoothing kernel s5 0:5;
d regularization: Horn and Schunk, a5 0:05;
d data range: (20:5, 0:5), with normalization, without

histogram matching.
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