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ABSTRACT

A motion estimation algorithm is applied to image sequences produced by

a horizontally-scanning elastic backscatter lidar. The algorithm, a wavelet-

based optical flow estimator named Typhoon, produces dense two-component

vector flow fields that correspond to the apparent motion of microscale aerosol

features. To validate the efficacy of this approach for the remote measure-

ment of wind fields in the lower atmosphere, an experiment was conducted

in Chico, California, in 2013 and 2014. The flow fields, estimated every

17 s, were compared with measurements from an independent Doppler li-

dar. Time-series of wind speed and direction, statistical assessment of the

10-min averages and examples of wind fields are presented. The comparison

of 10-min averages at 100 m AGL reveals excellent correlations between esti-

mates from the Typhoon algorithm and measurements from the Doppler lidar.

Power spectra and spectral transfer functions are computed to characterize the

filtering effects of the algorithm in the spatial domain.
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1. Introduction23

Motion estimation is a branch in the field of computer vision that develops algorithms to deter-24

mine the apparent movement of objects in sequences of digital images. Since the seminal paper25

by Horn and Schunck (1981), the applications of these numerical methods have become numer-26

ous; they play key roles in the success of many modern technologies including bioinformatics,27

video compression and machine vision. These techniques are also commonly found in experimen-28

tal fluid dynamics, applied for example to particle image velocimetry (PIV) (Adrian 2005). In29

contrast to in-situ measurements which are inherently restricted to a single point of space, motion30

estimation methods are non-intrusive and provide fields or volumes of velocity vectors and thus31

offer a broader perspective of the flow.32

Because of the abundance of images in the atmospheric and oceanic sciences, motion estimation33

has been practiced since before the digital age. For example, determination of the movement of34

cloud or water vapor features in satellite images was done prior to the work of Horn and Schunck35

(1981) through a block-matching approach (Leese et al. 1971). These atmospheric motion vectors36

(AMV) constitute nowadays an essential component of the observations assimilated by numerical37

weather prediction models (Garcı́a-Pereda and Borde 2014). Other modern applications involve38

for example the recovery of glacier velocities (Scambos et al. 1992), displacements resulting from39

landslides (Stumpf et al. 2013), surface water flows (Dugan et al. 2014) and breaking waves dy-40

namics (Melville and Matusov 2002).41

Another application, similar to PIV and AMV, involves the estimation of 2D, 2-component wind42

field from the apparent motion in aerosol backscatter lidar data (Schols and Eloranta 1992). Thus43

far the motion estimation algorithms used in that context were variations of the cross-correlation44

method (Mayor et al. 2012; Hamada et al. 2015). In this paper, a more recent approach that45
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was devised specifically for application to fluid motion is investigated. This algorithm, named46

Typhoon, is a wavelet-based optical flow estimator. It was previously validated with synthetic and47

real PIV images (Dérian 2012). Here, as a first step, the validity of this wavelet-based optical flow48

approach in the context of atmospheric lidar data is demonstrated.49

The paper is organized as follows: Section 2 introduces the motion estimation framework for the50

wind measurement problem and the traditional cross-correlation algorithm. Section 3 presents the51

proposed Typhoon algorithm. The input aerosol backscatter lidar data is detailed in Section 4. Fi-52

nally, in Section 5, estimated wind fields are validated by comparisons with remote measurements53

from a commercial Doppler lidar. Power spectra and transfer functions are calculated to show the54

filtering effect of the proposed approach.55

2. Wind measurement and motion estimation56

a. Wind measurement strategies57

Air motion is represented by a three-component vector and may be defined at all points in the58

atmosphere. The wind is generally regarded as the vector consisting of two horizontal components.59

Active remote wind measurement techniques may be subdivided into Doppler and non-Doppler60

approaches.61

Ground-based radars and lidars typically collect data in a spherical coordinate system. Doppler62

radars and lidars directly measure only the radial (line-of-sight) component of air motion. For a63

Doppler radar or lidar to measure the wind, specific scanning strategies and assumptions about the64

air motion over space and time must be made. Wind profiling describes the use of a remote sensor65

to provide a vertical profile of horizontal wind vectors at a single location above the surface of the66

earth. Alternatively, two Doppler radars or lidars, separated by some horizontal distance, may be67
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used to probe an area from different angles and obtain a two-component wind field. This approach68

is known as “dual-Doppler” (Stawiarski et al. 2013).69

Non-Doppler approaches estimate wind fields from the spatial and temporal movement of fea-70

tures observed by the instrument. Eloranta et al. (1975) provided some of the first remote wind71

measurements by lidar in the lower atmosphere. Since that time, hardware and software has ad-72

vanced greatly and a small number of validation experiments have been conducted, e.g. Mayor73

et al. (2012). Meanwhile, other fields, in particular experimental fluid dynamics, have developed74

similar approaches to retrieve motions. This concept is also known to the computer vision com-75

munity, where it is associated with the wide family of motion estimation techniques.76

b. Fluid motion estimation: the vision approach77

The idea of using the apparent motion of tracers to infer the invisible underlying fluid flow is78

not new. It “could probably be traced far back in history to the first time a person possessing79

the concept of velocity watched small debris moving on the surface of a flowing stream” (Adrian80

2005). Many visualization methods have been developed, such as using droplets, dye, smoke or81

shadows for the purpose of revealing fluid flow structures and dynamics (Van Dyke 1982). This82

led in particular to the well-known PIV techniques, which have been used in experimental fluid83

dynamics for almost 30 years (Adrian 2005). Our 2D, 2-component wind measurement approach84

fits in the motion estimation context: the tracers are the aerosol features, visualized by the lidar85

system, and the motion estimation technique is usually the cross-correlation. This configuration86

is very comparable to PIV, with the important differences that the distribution of aerosols in the87

atmosphere (the “seeding” of the flow) cannot be controlled, and that the images are not of indi-88

vidual particles, but instead of a field that approximately represents particle concentration (Held89

et al. 2012). In these aspects, this problem is closer to AMV computation. An important difference90
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is the temporal and spatial resolutions covered by these two approaches: typically, on the order of91

15 seconds and 10 meters for the considered lidar data, versus 15 minutes and several kilometers92

for geostationary satellite imagery (Garcı́a-Pereda and Borde 2014).93

c. Motion estimation framework94

Motion estimation aims to recover the apparent displacements within a sequence of images.95

The time and space variations of an observable image quantity are used to infer the underlying96

motion field occurring in the image plane between two consecutive frames of the sequence. In this97

work, input images are the scans provided by the lidar, the movements of the variations of aerosol98

backscatter intensity are used to estimate the wind field.99

In the following, the scan domain is noted as Ω ⊂ R2. The observable backscatter intensity is100

noted as In(x) at pixel x = (x1,x2) ∈Ω and at discrete time tn, n ∈ N. The apparent displacement101

between two consecutive scans In, In+1 is a 2D vector field u:102

u(x, tn) =

u1(x, tn)

u2(x, tn)

 .

This displacement is measured in pixel units and occurs over the time δ tn = tn+1− tn s. If the scan103

has a resolution of δx m pixel−1, an estimation of the instantaneous wind velocity v in m s−1 is104

therefore given by:105

v(x, tn) =
δx
δ tn

u(x, tn). (1)

As such, the motion is assumed to be stationary during the time step δt .106

Velocity components v1, v2 are the in-plane components, that is, they belong to the image plane.107

Due to the very low value of the elevation angle of the lidar scan plane (typically < 6◦), these108

components coincide with the horizontal wind components (usually denoted u, v in atmospheric109
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sciences). The out-of plane component (normal to the scan plane), which remains unestimated,110

thus corresponds to the vertical component w.111

The question of the accuracy of motion estimation techniques is often raised. The answer is112

complex, since it involves the data characteristics (spatial, temporal resolutions), the information113

given by the visualization method (the image content), and the underlying motion field itself. In114

the current context, the later contributions are difficult to quantify, as they depend largely on the115

conditions (e.g., the presence of particulate matter, the scales and variability of the wind field).116

However, assuming ideal conditions and a perfect model, errors related to the resolution of data117

may be quantified. If displacements are measured as integers on the image grid, the systematic118

error is ±0.5 pixel, which then gives ±0.5δx/δt m s−1 for each motion component. In practice,119

various interpolation techniques allow for sub-pixel estimation, reducing this error. The error can120

be also lowered by using a smaller δx and/or a larger δt . However, for a given motion field, a121

smaller δx results in larger apparent displacements, which can be more challenging for estima-122

tion algorithms. On the opposite, larger δt leads to less accurate perception of the instantaneous123

velocity, since the assumption of stationarity of the motion field is less valid over longer periods.124

Any motion estimation technique features two main aspects. The first one, known as the data125

model, describes the link between observations I (the aerosol backscatter intensity) and the under-126

lying unknown displacement u. This model should take into account the nature of observed data127

and its relevant dynamics. Then, as an inverse problem, motion estimation is usually ill-posed.128

The second aspect is therefore the regularization, which is required in order to close the estima-129

tion problem. The regularization may also provides information where the data model fails locally.130

The various estimation techniques feature different data models, regularizations or implementation131

strategies.132
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d. The cross-correlation algorithm, concept and limitations133

The cross-correlation technique performs independent, local motion estimations on subregions134

(blocks) of the scan domain. It consists in correlating a block of the first scan In with a translated135

block of the second scan In+1; the translation vector u which induces a correlation peak is consid-136

ered to be the displacement at the center of the block (Schols and Eloranta 1992). The estimation137

problem, presented in its basic form, is written as:138

∀x ∈ΩC,u(x, tn) = argmax
u ∑

y∈B(x)

[In+1(y+u)−µn+1(x+u)] [In(y)−µn(x)]
σ2

n+1(x+u)σ2
n (x)

, (2)

where ΩC ⊂Ω is the set of block centers (and therefore the set of locations of estimated vectors),139

B(x) is the block centered on x, µp(x) and σp(x) are the mean and standard deviation, respectively,140

of backscatter intensity Ip over block B(x). Note that in practice, this cross-correlation function141

(CCF) is computed using the FFT for computational efficiency.142

In this case, the data model is the CCF (2) itself; the regularization is implicitly given by the143

size of block B(x) which should be large enough to contain reliable information, yet as small as144

possible to resolve small scale motions. Typically, neighboring blocks overlap by 50%, so that the145

estimated motion field is sparse (fewer motion vectors than pixels). Each vector is the result of146

a single independent problem, which makes the CCF algorithm pleasingly parallel (Mauzey et al.147

2012). This cross-correlation approach and its numerous variants have become widely used in PIV148

(Adrian and Westerweel 2010); in geosciences it is often applied to satellite imagery to retrieve for149

instance glacier velocities (Scambos et al. 1992). It is also the standard method to derive AMVs150

(Schmetz et al. 1993; Garcı́a-Pereda and Borde 2014), and has given good results with aerosol151

backscatter lidar data, as shown in Schols and Eloranta (1992), Mayor and Eloranta (2001) and152

Mayor et al. (2012).153
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However, this method as presented in (2) is not exempt from drawbacks. First, the displace-154

ment within an entire block B(x) is explained by a single vector u(x), which implies that this155

displacement is assumed to be uniform (constant) over the block. The larger the block, the less156

likely this assumption is to be true. Yet, as overly small blocks may result in uncertainties due to157

lack of information, “large” blocks are usually preferred. This leads to the second point: as dis-158

placements occurring within large blocks are likely not uniform, the estimated u(x) corresponds159

to a power-weighted average of the apparent displacements within the corresponding block B(x)160

(Hamada 2014), which results in an over-smoothed motion field. To address these issues, this161

study proposes to evaluate a recently developed motion estimation algorithm dedicated to fluid162

flows.163

3. Typhoon algorithm164

Early attempts with a different class of motion estimation methods, often called optical flow,165

were conducted in 2010 on the CHATS1 dataset and led to promising results (Dérian et al. 2010).166

Since then the authors developed a new version of the algorithm based on a wavelet framework,167

named Typhoon. The extensive description of the algorithm is largely mathematical and details168

regarding the design of the data-model and the regularization can be found in Dérian et al. (2013)169

and Kadri Harouna et al. (2013), respectively. In the following, an overview of the method and the170

improvements made to achieve real-time wind estimation from aerosol backscatter lidar imagery171

are provided.172

1Canopy Horizontal Array Turbulence Study, near Dixon, CA, 2007 – see Patton et al. (2011).
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a. Optical flow, from observations to motion173

The proposed approach has two major differences with respect to the cross-correlation algorithm174

presented above. First, this wavelet-based optical flow uses a global formulation: all vectors u(x)175

of the displacement field u are estimated simultaneously by solving a single problem, whereas176

the cross-correlation approach in (2) has as many independent problems as vectors u(x). Second,177

this method provides a dense estimate, that is to say one displacement vector at every point x178

of the scan domain Ω, whereas the CCF solution is usually sparse. The estimate is obtained by179

minimizing a functional, similar to an energy, defined over the whole scan domain:180

u = argmin
u

{1
2

∫
Ω

[ fdata(I,u)]2 dx

+
α

2

∫
Ω

[ freg(u)]2 dx
}
.

(3)

fdata is the data model that depends on observations I and unknown displacement u, while the181

regularization freg depends on u only. The parameter α > 0 balances the two terms and is fixed by182

the user.183

The data model used in Typhoon is known as the displaced frame difference (DFD):184

In+1(x+u(x, tn)) = In(x) . (4)

It is analogous to finding the displacement field u that “warps” an image into the next one. This185

model assumes the consistency of backscatter intensity along the trajectory of an aerosol feature186

during the time interval [tn; tn+1], that is to say an aerosol feature will present the same intensity,187

the same “signature”, in both scans In, In+1. Therefore any phenomena inducing a significant188

change in intensity, such as turbulent diffusion or out-of-plane motion, can possibly lead to false189

apparent motions.2 Such phenomena are not uncommon, but it can be reasonably assumed that190

the time scales at which they act are significantly larger than the inter-scan time-step δ tn, so that191

2False apparent motions refer here to illusory motions of aerosol features that do not correspond to the horizontal wind.
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the DFD (4) remains valid. It is also important to note that from formulation (3), the data model is192

not strictly enforced. Instead, the solution achieves a balance between trying to follow the model193

on one hand and the regularization on the other – hence the role of the parameter α , which allows194

the user to give more weight to one term over the other.195

Regularization schemes usually encourage the estimate u to follow some smoothness assump-196

tion. This work uses the most simple first-order regularization, originally introduced in Horn and197

Schunck (1981), which penalizes strong velocity gradients. For each displacement component ui,198

i = 1,2:199

freg(ui) = |∇ui|=

√(
∂ui

∂x1

)2

+

(
∂ui

∂x2

)2

. (5)

Note that the square root is later cancelled by the square in (3). If the regularization is given much200

more weight than the data model (α → ∞ in (3)), the solution that minimizes (3) moves toward201

a uniform motion field (with ∇ui = 0 for i = 1,2). The regularizer also takes precedence over202

the data model locally where the latter is inefficient, for instance within uniform regions of the203

input images. Other regularizers are available in Typhoon, penalizing, for instance, the vorticity or204

divergence of the flow, or the gradient of vorticity, divergence; some of these schemes have proven205

to be very efficient with PIV and water vapor satellite images (Corpetti et al. 2002). However, as206

the regularization becomes more complex, the associated computational costs increase, which may207

reduce the ability to achieve real-time estimation. Moreover, in the context of aerosol backscatter208

lidar images, little to no improvement brought by the use of these advanced schemes was found.209

This could be linked to the specificities of this lidar data, which will be detailed further in Section 4.210
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The DFD model (4) and the Horn and Schunck regularizer (5) inserted into (3) complete the211

motion estimation problem:212

u(tn) = argmin
u

{
1
2

∫
Ω

[In+1(x+u(x, tn))− In(x)]2 dx

+
α

2

∫
Ω

∑
i=1,2
|∇ui(x, tn)|2 dx

}
.

(6)

A particularity of this problem is that the DFD model (4) is not linear in u, so that the whole func-213

tional is not quadratic. This complicates the minimization process, as the existence of a global214

minimum is not guaranteed. This is another role for the regularization term: it convexifies the215

functional as α → ∞. But, as large α values are unmanageable, to ensure a successful mini-216

mization it is important for the solution u to lie “close” to the first guess.3 This calls for the use217

of an incremental strategy, often known as “multi-resolution”: the displacement field is estimated218

following a coarse-to-fine process, starting with coarse structures of large amplitudes, and progres-219

sively refining toward smaller scales. This last point motivates the use of the wavelet framework.220

b. Introduction to the wavelet framework221

In signal processing, the spectral space is often used to analyze or exhibit some properties of a222

given signal. The FFT leads to a representation in terms of sine and cosine functions of specific223

frequencies. Any spatial information is lost in the process: the Fourier coefficients, which form224

an equivalent representation of the input signal, yield no information as to where their associated225

frequency is or is not present. This is due to the fact that the sine and cosine functions, which form226

the basis of the spectral space, are very well localized in frequency but have an infinite support in227

space. Conversely, looking at the signal in the physical space does not give any information on the228

frequency content. The wavelet formalism offers a trade-off: the wavelet functions are localized229

both in space and frequency, thus they enable access to information on the frequency content and230

3which is usually the null motion field, u(x) = 0 ∀x ∈Ω.
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the spatial location simultaneously – at the cost of lower precision. A wavelet representation of231

a given signal consists of a coarse approximation of the signal, along with several sets of details232

containing spatially-localized information at various ranges of frequencies. Note that instead of233

frequency, the wavelet formalism prefers the equivalent but reciprocal notion of scale.234

This multi-scale (or, multi-resolution) representation offered by the wavelet transform is the235

main motivation to adopt wavelet bases for displacement components u1, u2. It leads to a “natu-236

ral” coarse-to-fine strategy suitable to motion estimation (Dérian et al. 2013). Approximation and237

coarse detail coefficients are estimated first, then fine-scale details are successively added until the238

smallest scale is reached. Besides the multi-scale framework, wavelet bases also allow the rep-239

resentation of arbitrary regular functions (a 3D fluid motion field should at least be continuous).240

While the continuity might not be a relevant assumption for the 2D field, a sufficient regularity is241

required in order to compute the regularizing terms presented in Section 3.a, which involve spa-242

tial derivatives. Finally, these regularization schemes find a relatively simple yet very accurate243

implementation in that context (Kadri Harouna et al. 2013). Similarly to the Fourier transform,244

the wavelet transform is a linear, separable4 operator, with fast algorithms (fast wavelet transform,245

FWT) for computational efficiency. Wavelets are also used in many fields, from signal denois-246

ing to video compression; Mallat (2008) discusses an extensive presentation of the theory and247

applications.248

Conceptually, the use of wavelet bases does not lead to significant changes to the estimation249

problem (6). Each motion component ui is expressed as the inverse transform (reconstruction) of250

its corresponding wavelet coefficients ci:251

ui =Winv(ci) , i = 1,2 ,

4The 2D transform is obtained by combining two 1D transform, first along rows then along columns.
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where Winv denotes the inverse wavelet transform. The set of wavelet coefficients {c1,c2} thus is252

the unknown to the estimation problem.253

c. Recent improvements254

The original algorithm detailed in Dérian et al. (2013) would accept square images only. If255

input images were rectangular, they had to be padded to turn them square, which increases the256

computational burden. The current version has been modified to accept rectangular images.257

The main improvement is the result of redesigning the code to run in “real-time”. To keep up258

with real-time, the estimate of wind field v(tn) from scans In, In+1 must be complete by the time259

the next scan In+2 is made available, with the inter-scan time-step δ tn typically on the order of260

10 to 20 seconds. Since the whole motion field is estimated simultaneously, the number of vari-261

ables is quite large: a dense estimate from 512×512 pixel images represents about half a million262

unknowns. Wavelet transforms lie at the core of the estimation process. Each evaluation of the263

functional (6) requires two inverse FWTs (to reconstruct the displacement u from its coefficients)264

and two forward FWTs (to compute the gradient). In order to achieve the necessary reduction in265

computation time, the low-level functions of the algorithm – in particular, the wavelet transforms266

– were rewritten in CUDA language, which enables it to execute on NVIDIA’s graphic processing267

units (GPU). GPUs designed for scientific computing rely on several thousands of small com-268

puting units, thus providing massive parallelization capabilities. The CUDA version of Typhoon269

running on an NVIDIA GeForce GTX Titan is 10 to 100 times faster than the original version270

(Mauzey et al. 2014), and is sufficient to meet the real-time requirements.271
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4. Application to aerosol backscatter data272

The results presented hereafter have been obtained from data collected by the Raman-shifted273

Eye-safe Aerosol Lidar (REAL) (Mayor and Spuler 2004; Spuler and Mayor 2005; Mayor et al.274

2007; Spuler and Mayor 2005) in 2013 and 2014 in Chico, California. The REAL is a ground-275

based, scanning, elastic backscatter lidar operating at a wavelength of 1.54 microns, with a pulse276

energy typically between 120 and 170 mJ, a pulse rate of 10 Hz and a pulse duration of 6 ns. It277

employs 40 cm diameter optics and an analog direct detection receiver. The backscatter signal is278

sufficiently strong from a single pulse that averaging over multiple pulses is not required. This279

section describes the input scan data as well as the preprocessing steps.280

a. Data preprocessing281

Before motion estimation takes place, the raw signal delivered by the REAL must be prepro-282

cessed. Lidar data is sampled on a polar grid, with the lidar at the origin. Each scan is composed283

of shots, with a shot being a 1D array of backscatter samples, uniformly spaced along the range r284

every 1.5 m, collected at a given angular position θ from a single laser pulse.285

The raw backscatter intensity Iraw(r,θ), with the range r and the azimuth angle θ , corresponds286

to the actual backscatter signal β (r,θ) and an additive noise ε(r,θ).287

Iraw(r,θ) = β (r,θ)+ ε(r,θ) .

The noise ε combines contributions from the atmosphere and the instrument and can be modeled288

by a random variable which follows a normal distribution of mean µθ and standard deviation σθ .289

Values of µθ , σθ change slightly from one shot to another, hence their dependency in θ ; they can290

be estimated for each shot from background data. As explained in Mayor et al. (2012), first the291
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noise mean is subtracted:292

I0(r,θ) = Iraw(r,θ)−µθ = β (r,θ)+ ε0(r,θ) ,

with ε0(r,θ) = ε(r,θ)−µθ the now centered random noise. The raw signal-to-noise ratio (SNR)293

is computed at that point:294

SNRraw(r,θ) =
I0(r,θ)

σθ

. (7)

Shots are then multiplied by the square of the range to compensate for the one-over-range-squared295

decay of the backscatter β :296

Ir2(r,θ) = r2I0(r,θ) = r2
β (r,θ)+ r2

ε0(θ) .

Note that the noise amplitude now increases as the square of the range. For optimal results, it is297

then essential to discard irrelevant noisy data, which is discussed further.298

After conversion to decibels, shots are filtered in the range dimension. The low-pass median299

filter of length 7 points (10.5 m) removes high-intensity spikes typically caused by hard-targets300

such as birds and insects, while the high-pass median filter of length 333 points (500 m) removes301

the very large structures to reveal local fluctuations. Figure 1 presents an example of preprocessed302

backscatter data (panel a), along with the corresponding raw SNR (7) (panel b).303

b. Detecting coherent features304

Two different aspects complicate the motion estimation process. First, due to the nature of305

backscatter data, the raw SNR (7) decays as one-over-range-squared. Typically, for the REAL306

operating in Chico, CA, the SNR resulting from a single laser pulse drops below 5 at r = 3 km.307

Such high levels of noise in the far range are challenging for optical flow. Second, for the purpose308

of motion estimation, a good SNR in the near range does not necessarily imply useful information.309
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For instance, coherent features can be absent from a region of the scan, yielding much uncertainties310

as to the underlying wind field in that region.311

In order to maximize the quality of the results, the scan areas presenting no coherent aerosol fea-312

tures are discarded. Because of the regularization schemes provided by optical flow (Section 3.a),313

wind vectors estimated over noisy areas could be relevant. However judging so proves to be diffi-314

cult, as often even a basic visual confirmation is impossible in noisy regions. Hence, it is safer to315

simply discard the noisy image data before motion estimation.316

To detect the presence of coherent aerosol features, the image SNR is used. It is defined as the317

ratio of the local standard deviation of coherent signal σβ (r,θ) to the local standard deviation of318

noise σε :319

SNRimg(r,θ) =
σβ (r,θ)
σε(r,θ)

. (8)

This ratio is estimated from the autocovariance function of preprocessed data I(r,θ). For every320

point (r,θ), the autocovariance Cl is computed along the range from data in [r− l/2;r + l/2].321

Then, the local variance of coherent signal is given by the average of coefficients at lag 1 and -1:322

(σβ )
2 = 0.5(Cl(−1)+Cl(1)) ,

while the local variance of noise is obtained from the 0-lag coefficient and σβ :323

(σε)
2 =Cl(0)− (σβ )

2 .

An example of image SNR is shown in Fig. 1 panel c. A 256-point window was used to compute324

the autocovariance, corresponding to l = 384 m.325

From the image SNR, a valid data domain is computed for each scan. It is assumed that the best326

data is in the near range, therefore the valid domain is simply defined by a far-range boundary. For327

each shot (azimuth θ ), this far-range boundary is given by the smallest range R(θ) above which328
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the image SNR remains below a threshold τ fixed by the user:329

∀θ , R(θ) = min
R

{
R : ∀r > R, SNRimg(r,θ)< τ

}
. (9)

Finally, a low-pass median filter of width 25 points and a Gaussian filter of parameter σ = 2330

points are applied to the set of R(θ), to exclude small isolated features and smooth the boundary.331

An example of mask representing the valid data domain is shown in Fig. 1 panel d, using τ = 3.332

c. Correction of image distortions333

A lidar scan does not correspond to an instantaneous view of the aerosol distribution. The shots334

that compose the scan are acquired sequentially. In the event of high wind speeds, this leads to335

apparent distortions of the aerosol features in the lidar images, which in turn causes the estimated336

motion to be biased. This issue was first noted by Sasano et al. (1982) who proposed an iterative337

correction method. Assuming that the aerosol features are transported without deformation by a338

uniform wind vector, scans can be warped to reconstruct an approximated instantaneous view of339

the aerosols, thus improving the accuracy of motion estimation. In this study, implementation340

proceeds as follows for a given scan pair:341

i. Estimate the displacement field u from the pair of scans with the Typhoon algorithm.342

ii. Convert to velocity field v using (1).343

iii. Correct both scans for distortions using wind field v, following Sasano et al. (1982). The time344

of the beam at the center of the scan is used as the reference time.345

iv. Repeat i–iii until mean wind speed |v̄| changes by either less than 1%, or less than 0.25δx/δ t.346

Typically, it requires 2-3 iterations.347

The correction step (iii) is carried on the polar grid data. After correction, backscatter data is no348

longer known on a regular polar grid, but instead is at scattered locations.349
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d. Cartesian gridding350

After preprocessing, masking and correction for distortions, the backscatter data is interpolated351

on a Cartesian grid of spacing δx = 8 m. It is possible to perform the motion estimation directly352

on the original polar grid, however, as mentioned above, the correction step destroys the regularity353

of the mesh. Fast interpolation on large sets of scattered data can be challenging, considering354

real-time requirements. In this work, a CUDA implementation of nearest-neighbor interpolation355

was used.356

5. Validation357

A field experiment was conducted in Chico, CA, from mid-September 2013 to mid-January358

2014, to validate the wind fields recovered by Typhoon. A Doppler lidar (DL) was deployed to359

provide independent wind measurements. It is a pulsed, heterodyne detection Doppler lidar com-360

mercialized by HALO Photonics under the name Stream Line (Pearson et al. 2009). This model361

was previously certified against cup anemometer measurements (Axel and Ailt-Wiard 2014), and362

showed very good agreement to radar wind profiler and radiosonde (Päschke et al. 2014). The DL363

has the S/N 0811-35 and was built in November 2011. It operates at a wavelength of 1.5 microns,364

pulse energy of 20 µJ, pulse rate of 15 kHz, and a pulse duration of 150 ns. DL data was fil-365

tered following the manufacturer’s indications, keeping only points for which the minimum SNR366

intensity > 1.01.367

Since it is not possible to retrieve a 2D 2-component wind field using a single DL, two different368

configurations were investigated.369

• Temporal validation. The DL was located at 1500 m range, 15◦ azimuth from the REAL370

and operated in vertical profiling mode. Data from this configuration enable comparisons of371
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time-series of 2-component wind velocities at the DL location. This phase of the experiment372

was conducted during September and October 2013.373

• Spatial validation. The DL was located on the roof of the REAL container and operated374

in fixed-beam mode, staring at the center of the sector scan area swept by the REAL. This375

configuration enables one to compare radial wind velocity components along the DL line-of-376

sight. Data for this second phase of the experiment were collected in December 2013 and377

January 2014.378

The main parameters used by both systems during these two experiments are summarized in Ta-379

ble 1.380

a. Temporal validation381

In this experiment, the REAL scans between -15◦ and 45◦ azimuth, with a 4◦ elevation, every382

17 s. This places the scan at 100 m AGL at the range of the DL. The DL operates in vertical383

profiling mode (VAD scan), providing a profile of 2-component horizontal wind vector about384

every 15 s.385

A typical example of aerosol motion estimation is presented in Fig. 2. It features a close-up of386

two motion fields estimated from three successive position plan indicator (PPI) scans. The flow is387

relatively uniform, and can be visually identified due to a large aerosol feature that moves toward388

the southeast. The DL wind vectors at 100 m AGL are displayed for comparison and show a good389

agreement with the Typhoon estimates.390

In this paper, an effort is made to establish the potential of the Typhoon algorithm when applied391

to aerosol backscatter lidar data. However, quality of the data depends upon the performance of392

the instrument and the state of the atmosphere. Therefore, we selected the days presenting the393

20



best potential for this validation among data collected in Chico, CA from mid-September to mid-394

November 2013, with the expectation that future advances in hardware will lead to increases in395

data quality and availability. First, due to the local typical conditions in Chico, aerosol backscatter396

imagery is much better for this application during the daytime than during nighttime. There-397

fore, this study was restricted to daytime only. Second, the percentage of valid backscatter data398

(Sec. 4.b), during daytime, in a 50 m radius around the DL were computed. These values are399

plotted against the mean wind speed measured by the DL the same day in Fig. 3. With a suffi-400

cient spatial distribution of aerosol features, dense 2-component wind fields can be delivered up to401

several km in range. Figure 4 shows an example of such wind field on a day with high speed and402

uniform direction, with vectors available out to 4 km range. The low-SNR area in the far-range403

were dynamically excluded. Figure 5 presents a view of a ≈ 200 m vortex, illustrating the ability404

of Typhoon to extract coherent structures at intermediate scales.405

Three specific cases are described below: light, moderate and strong wind conditions. These406

days are represented by solid diamonds in Fig. 3. For each case, time-series of instantaneous and407

10-min averaged wind measurements are presented. 10-min averages are the reference measures408

for instrument validation in the wind power industry (Bailey 2012). Then, statistics on 10-min409

averages for the 15 days having more than 85% valid data are presented.410

The VAD scan strategy used by the DL assumes that the wind is uniform throughout the swept411

area (Mann et al. 2009, 2010; Sathe et al. 2011; Sathe and Mann 2012); in this case this region is a412

disc of about 100 m radius, represented by a turquoise circle in Figs. 4 and 5. In order to compare413

results of the study to the DL measures, instantaneous Typhoon estimates are averaged in space414

over a similar sized area centered on the DL location.415

Occasionally, the estimation may fail and result in obvious outliers. Those outliers can be de-416

tected and removed under the assumption of temporal coherence of the wind field. The normalized417
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median test, commonly used in PIV (Adrian and Westerweel 2010), was implemented. Similar418

concepts are used with radar wind profilers (Weber et al. 1993). Within each 10-min window, the419

median wind vector vm is computed, as well as the residuals r(v) = |vm−v| for each vector v of420

the window. Vectors for which the residual r(v) is twice larger than the median of residuals rm are421

discarded.422

1) LIGHT WIND CASE423

Figure 6 shows wind speed and direction measured by the DL at 100 m AGL and estimated424

by Typhoon for a 12-hour period starting on October 23 at 15:00 UTC. It is a light wind episode425

with speeds remaining below 3 m s−1 and variable direction. Estimates are missing over a pe-426

riod approximatively covering 15:00 to 17:00 UTC. This is due to the coherent feature detection427

presented in Sec. 4.b: no significant features were present in the region of interest at that time,428

therefore no motion estimates are available. Then, between 17:00 and 18:00 UTC, Typhoon speed429

and direction estimates are in systematic error. Visual inspection of the aerosol imagery reveals430

the mixed layer growing with the entrainment zone passing through the altitude of the intercom-431

parison. It appears that the plumes and wind shear in the entrainment zone result in false apparent432

motions that bias the motion estimations. Later, two reversals of wind direction occurred at 22:30433

and 23:30 UTC that correspond to the passage of a vortex of diameter ≈ 200 m over the region434

of interest (see also Fig. 5 for a spatial visualization). This microscale circulation resembles those435

that have resulted from large eddy simulation of convective boundary layers (Schmidt and Schu-436

mann 1989; Kanak 2005; Sullivan and Patton 2011). Correlation coefficients R2 for the 10-min437

averaged wind components are 0.951 and 0.600 for u and v, respectively. Excluding the 17:00 –438

18:00 UTC period with false apparent motions, R2 values increase to 0.966 and 0.866.439
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2) MODERATE WIND CASE440

Figure 7 shows wind speed and direction measured by the DL at 100 m AGL and estimated441

by Typhoon for a 12-hour period starting on September 17 at 15:00 UTC. This wind episode fea-442

tures speeds ranging 0 to 10 m s−1 and direction mostly stationary except for a 2-hour fluctuating443

episode (corresponding to the lowest wind speeds). Wind speed is underestimated at two occa-444

sions, both corresponding to rapid and large changes in direction around 22:30 and 23:00 UTC.445

Otherwise, both series of data are in very good agreement. This is confirmed by the 10-min aver-446

aged wind components: correlation coefficients R2 are 0.979 and 0.991 for u and v, respectively.447

3) STRONG WIND CASE448

Figure 8 shows wind speed and direction measured by the DL at 100 m AGL and estimated449

by Typhoon for a 12-hour period starting on October 9 at 15:00 UTC. It is a strong wind episode450

with speeds up to 16 m s−1 and very consistent flow from the northwest direction. Both time-451

series are again in very good agreement. Correlation coefficients R2 for the 10-min averaged wind452

components are 0.984 and 0.929 for u and v, respectively.453

4) OVERALL CONSIDERATIONS454

Scatter plots of 10-min averaged wind components measured during the daytime5 for the 15455

“best” days (Fig. 3) are presented in Fig. 9. They show an overall excellent agreement of Typhoon456

estimates with DL measurements at 100 m AGL: correlation coefficients R2 are 0.995 and 0.997457

for u and v, respectively. Detailed statistics on u and v are available in Tables 2 and 3. In terms of458

wind speed, a linear regression gives a slope of 1.000 with an offset of -0.10 m s−1, R2 coefficient459

5“Daytime” is arbitrarily considered to be 15:00 – 01:00 UTC (10 hours).
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is 0.991. Regarding the wind direction, the offset is 1.1◦ and R2 coefficient is 0.944.6 This ≈ 1◦460

offset observed for the direction corresponds to the precision at which the DL was oriented during461

its deployment. The root mean square error (RMSE) between Typhoon’s estimates and the DL462

observations is 0.29 m s−1 on both on u and v components. This is slightly higher than the expected463

systematic error of 0.5δx/δt ≈ 0.24 m s−1 which assumes perfect data and model (Sec. 2.c). The464

few remaining outliers mostly correspond to false apparent motions, typically occurring at the465

beginning and end of the day as the boundary layer depth evolves.466

From the time-series shown in Figs. 6, 7 and 8, it appears the variability of the wind speed467

obtained by Typhoon is less than that measured by the Doppler. Figure 10 is a scatter plot of468

turbulent kinetic energy (TKE) as measured by the Doppler and Typhoon over 10-min intervals.469

A linear regression suggests that the TKE from Typhoon is about 50% smaller than the Doppler’s.470

This could be linked to the fact that Typhoon measures apparent displacements, which are later471

converted to velocities (Sec. 2.c). Small-scales velocity structures, either in time or space, are472

less accurately perceived. Using a faster scan rate is likely to improve the results. Nevertheless,473

Typhoon performs better than the cross-correlation technique: the optimized algorithm presented474

in Hamada et al. (2015) recovers 39% of the TKE on the same dataset.475

b. Spatial validation476

During this phase of the experiment, the DL was colocated with the REAL. The REAL swept477

between 15◦ and 75◦ azimuth at 2◦ elevation every 17 s. The DL held its beam fixed at 45◦ azimuth478

and 2◦ elevation, measuring the radial velocity component as a function of range and time. DL479

measurements were integrated over one second, with a range gate of 48 m. The temporal resolution480

6When dealing with circular data such as angles, the slope for the linear regression should be fixed to 1. The offset and R2 only are computed,

see e.g. Fisher (1995).
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of DL measurements is therefore much finer than that of the REAL flow fields, and conversely for481

the spatial resolution (see Table 1).482

Instead of holding the DL beam fixed, a PPI sweeping strategy identical to the REAL’s could483

have been used, thus allowing the comparison of radial components over the whole scan domain.484

However, two arguments support the choice of a fixed beam:485

• With a moving beam set-up, the integration time for DL measurements was reduced to less486

than 0.1 s. This would cause the SNR to decrease very rapidly. Typically in Chico the487

maximum range with useful data would be on the order of 1500 m, significantly below that488

of the REAL’s.489

• The radial velocity fields collected by the DL would suffer from the same distortions as the490

backscatter data (Section 4.c), so correcting these distortions would be challenging.491

The data used for the spatial validation were recorded in December 2013 and January 2014. In492

Chico, CA, the days are shorter and the air is cleaner during this season than in the autumn when493

time-series data were collected. Both the DL and the REAL are affected. Data are of lower quality494

than shown for the temporal validation. The availability of 10-min averages falls below 50% after495

3 km for both instruments and at 5 km it is below 5%. Therefore, the analysis is restricted to the496

first 3 km. Furthermore, it should be noted that the prevailing wind direction during this time over497

Chico, CA is northwesterly. At 45◦ azimuth, the line-of-sight component corresponds mostly to498

the cross-stream, turbulent wind perturbations. In these data, its magnitude remains mostly below499

3 m s−1. Figure 12 shows a comparison of radial velocity measured by the DL and extracted from500

the 2-component fields obtained by Typhoon for a 8-hour period starting 8 January 2014 at 17:00501

UTC.502
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In order to compute statistics, radial velocities were averaged. First, spatial resolution are503

matched by averaging Typhoon velocities in space according to DL range gates, then 10-min time-504

averages are computed at every range. A scatter plot of these 10-min averages is presented in505

Fig. 13, along with linear regression slopes, R2 coefficient and distribution of differences. These506

values were obtained from 8-hour periods (17:00 to 01:00 UTC) for 8 days of December 2013 and507

January 2014. The R2 coefficient (panel d) decreases with the range and this is expected as both508

instruments are affected by the gradual reduction in SNR. R2 remains above 0.95 over the first509

1.5 km, then slowly decreases to about 0.8 at 3 km. The overall R2 is 0.928. While the relation510

between Typhoon and DL velocities remains linear, the slope (panel c) increases with the range,511

from about 0.95 at 0.5 km to 1.3 at 3 km. Velocities obtained by the cross-correlation method512

show a similar trend (Hamada et al. 2015). This leads to a theory that these discrepancies are due513

to a mismatch in the actual elevation angles of the beams during this phase of the experiment,514

especially considering the unbiased results of the temporal validation. At a lower elevation angle515

and therefore lower altitude, the DL would measure lower velocities.516

c. Spectral analysis517

In this section, temporal and spatial power spectra of the velocity components produced by518

Typhoon are presented, with the objective of characterizing the filtering effect of the algorithm –519

in particular, in the spatial domain. The velocity data analyzed were collected during the daytime520

and within the turbulent lower atmospheric boundary layer.7 Therefore, an inertial subrange in the521

power spectra of the actual velocity field is expected.522

7RHI scans collected every 15 min by the REAL during the 15 days included in the analysis show that the maximum convective boundary layer

height, that typically occurred in the afternoon, ranged from 300–1200 m AGL.
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The spectra are computed in natural coordinates to account for the anisotropy of atmospheric523

boundary layer turbulence. The west-east and south-north wind velocity components are projected,524

according to the mean wind direction, as streamwise (us) and cross-stream (vn) components, such525

that us carries the mean speed and vn has a null mean. The mean wind vector is defined accordingly526

to the investigated dimension, either in time or space. The spectra are finally averaged together527

according to the mean wind speed, using bins of 0–4 m s−1, 4–8 m s−1, 8–12 m s−1 and 12–528

16 m s−1, in order to exibit their evolution with increasing wind speed and turbulent kinetic energy.529

The resulting power spectral densities (S) are multiplied by frequency ( f ) or wavenumber squared530

(κ2) so that an inertial subrange would appear as a −2/3 slope and white noise would appear as531

+1 slope.532

1) TEMPORAL POWER SPECTRA533

During the experiment, the REAL collected PPI scans every 17 s and one RHI scan every 15 min.534

The RHI scan resulted in an 30 s interruption of the PPI scan sequence. The scan strategy of the535

DL provided vertical profiles of horizontal winds every 15±1 s. Since the FFT requires data536

points at a uniform time interval, the Typhoon and DL wind measurements were interpolated to537

a 5 s time series. From the 5 s time series data, we computed power spectra over consecutive538

10 min intervals. The 10-min mean wind vector was used for the projection in natural coordinates539

and the binning of spectra, as defined above. The resulting spectra have a Nyquist frequency of540

0.029 Hz (34 s period) for the Typhoon velocities and 0.033 Hz (30 s period) for the DL. The541

lowest frequency is 1.67×10−3 Hz (10 min period).542

The spectra are presented in Fig. 14. Those from the Doppler lidar are consistently higher than543

the spectra from Typhoon, this is consistent with our observation that the TKE measured from544

Doppler velocities are larger than those from Typhoon (Fig. 10). The temporal spectra appear to545
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become flatter as the mean wind speed increases. We hypothesize that this may be caused by the546

challenges that both Typhoon and the DL face under windy conditions. For the DL, increased547

variability of the actual wind velocity field in the VAD sample area results in more error in the548

horizontal wind vector estimate. The increased error appear as noise at these time scales and549

flatten the spectrum. For Typhoon, windy conditions result in larger horizontal displacements550

between scans and faster deformation of aerosol coherent structures.551

2) SPATIAL POWER SPECTRA552

An independent observation of the 2-component 2-D velocity field does not exist for comparison553

with those produced by Typhoon. A dual-Doppler lidar set up could have provided it, but would554

have doubled the cost and complexity of the project. Therefore, to investigate the integrity of the555

vector flow fields in space, spatial power spectra are considered.556

A 1 km diameter circular area is considered, centered on the DL at 1.53 km range. All of the557

vectors within this area (from a single flow field in time) are used to compute the spatial mean wind558

vector, which then define a natural coordinate system. Vectors of the flow field are interpolated on559

a 128×128 point grid (1024 m × 1024 m) that is centered on the DL and aligned with the natural560

coordinate system, and then projected as streamwise (us) and cross-stream (vn) components. This561

operation was performed for each flow field independently and resulted in 30092 flows fields over562

15 days. At 4◦ elevation, the 1024 m × 1024 m area covers a range of altitudes from about 50 m563

to 150 m AGL. A possible impact of this is that the turbulence statistics within this sloped domain564

are slightly inhomogeneous. Nevertheless, for each component us, vn, the 2D power spectral565

densities computed by FFT for each flow field are averaged together according to the mean spatial566

wind speed. Finally, slices of the resulting 2D power spectra were extracted along the streamwise567

and cross-stream directions. This results in four 1D spectra for each wind speed bin: along the568
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streamwise and cross-stream directions, for each of the streamwise and cross-stream components.569

The Nyquist wavenumber is κ/2π = 0.0625 m−1 (16 m wavelength), the lowest wavenumber is570

9.77×10−4 m−1 (1204 m).571

The spectra in the top row of Fig. 15 show the TKE increasing as expected as function of wind572

speed. Each spectrum has a maximum amplitude at low wavenumbers. We hypothesize that the573

peak corresponds to one over the Eularian length scale, and is within the energy containing range574

(Kaimal and Finnigan 1994). However, the spectra are steeper than κ−2/3. We attribute this to575

two factors. First is the likely absence of aerosol features at all scales and all locations in the scan576

area at all times. Second is the regularization used in Typhoon which favors a smooth motion field,577

especially as the estimation reaches the smallest scales.578

A transfer function describes the ratio of two spectra and, in the present work, represents the579

attenuation of the actual wind field caused by the motion estimation as a function of wavenumber.580

A highly idealized spectrum is constructed to serve as the reference. This is done by first locating581

the maximum of each mean spatial spectra shown in Fig. 15. We assume that the observed power582

at wavenumbers smaller than the peak in the spectra are accurately captured by the algorithm and583

serve as a proper approximation of the power at those large scales. For scales smaller than the584

peak, we extrapolate by a power-law dependence through the higher wavenumbers that mimics585

the inertial subrange (a κ−2/3 spectrum). The transfer functions are then given by the ratio of the586

observed mean spectra over the idealized spectrum, and presented in the bottom row of Fig. 15.587

The higher the wind speed, the more energy is missing at small scales. The ratio typically drops588

below 50% at scales of ≈100 m (κ/2π ≈ 0.01 m−1) for the highest wind speeds, and ≈75 m for589

the lowest.590
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6. Broader perspectives and conclusions591

In a recent paper, entitled Review of turbulence measurements using ground-based wind lidars,592

Sathe and Mann (2013) conclude that “Non-coherent detection may also provide possible new593

ways to estimate atmospheric turbulence, but to our knowledge it does not, so far, challenge the594

capabilities of coherent Doppler lidars.” In this paper, we have (1) introduced a new motion595

estimation method; (2) made the first direct comparisons of the “non-Doppler motion estimation596

approach” with Doppler lidar; and (3) computed transfer functions to estimate the filtering effect597

of the approach. The new motion estimation method resolves finer spatial scale flow details than598

the traditional cross-correlation algorithm (Hamada et al. 2015). The comparisons in the time599

domain reveal excellent correlation in terms of 10-min averages, close for example to standards600

expected of commercial floating lidars (Carbon Trust 2013). However, the proposed approach still601

underestimates the TKE by about 50% of what is observed by Doppler lidar. It is important to602

keep in mind that the Doppler also provides a filtered version of the actual flow field.603

Two horizontal components are required for wind speed and direction. The proposed approach604

delivers dense 2-component wind fields from a single lidar, whereas a single Doppler only pro-605

duces a single component. In addition to wind resource assessment, wind fields such as delivered606

by Typhoon from REAL imagery enable the visualization and investigation of meteorological phe-607

nomena such as vortices and fronts. They also open the possibility of studies in the Lagrangian608

reference frame, and the tracking of flow structures or aerosol features.609
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Mathematical Symbols614

• ∀ for all;615

• ⊂ subset of;616

• ∈ in (belonging to);617

• N, R the sets of natural and real numbers, respectively.618

APPENDIX B619

Parameters of Typhoon620

Unless specified, results were obtained using the following parameters for Typhoon:621

• version: cuTyphoon 1.0;622

• wavelet basis: Daubechies, 10 vanishing moments;623

• wavelet scales: 8 details scales considered and estimated;624

• pyramid steps=1, scaling factor=50%;625

• data model: DFD, smoothing kernel σ = 0.5;626

• regularization: Horn & Schunk, α = 0.05;627

• data range: [−0.5,0.5], with normalization, without histogram matching.628
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TABLE 1. Main parameters of DL and REAL measurements for the temporal and spatial validation experiments.

Temporal validation Spatial validation

Doppler REAL Doppler REAL

scan type VAD PPI STARE PPI

azimuth (◦) – [−15;45] 45 [15;75]

elevation (◦) – 4 2 2

range (km) – [0.5;5.5] [0;5] [0.5;5.5]

components 2 2 1 2

δx (m) – 8 48 8

δ t (s) 15 ±1 17 1 17
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TABLE 2. RMS error, linear regression variables (slope, offset), correlation coefficient R2, number of points

and recovery percentage w.r.t. DL reference for the 10-min averaged wind component u (west-east), for the

temporal validation results (Sec. 5.a).

748

749

750

case RMSE (m s−1) slope offset (m s−1) R2 # points % recovery

light 0.17 1.047 -0.01 0.951 61 84.7

moderate 0.29 0.974 -0.05 0.979 72 100

strong 0.33 0.938 0.32 0.984 72 100

15 days 0.29 0.989 -0.03 0.995 892 99.1
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TABLE 3. RMS error, linear regression variables (slope, offset), correlation coefficient R2, number of points

and recovery percentage w.r.t. DL reference for the 10-min averaged wind component v (south-north), for the

temporal validation results (Sec. 5.a).

751

752

753

case RMSE (m s−1) slope offset (m s−1) R2 # points % recovery

light 0.27 0.660 -0.02 0.600 61 84.7

moderate 0.23 0.999 0.00 0.991 72 100

strong 0.34 0.897 -0.72 0.929 72 100

15 days 0.29 1.001 0.03 0.997 892 99.1
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FIG. 1. Example of preprocessing applied to a horizontal scan collected on 3 October 2013 at 23:14:10 UTC.

Panel (a) is the preprocessed backscatter data. Panel (b) is the raw SNR (7), revealing a 1/r2 decay. Panel (c) is

the image SNR (8) computed using a 384 m window. Panel (d) is the valid data domain computed from image

SNR. Motion is estimated in the white area only, excluding far-range noisy regions. The far-range boundary (9)

of this area is also shown in (a) as a white line. Resulting, decimated vector flow field has been added to the

valid area in (d).
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FIG. 2. Illustration of the experimental design for the temporal validation of motion estimation vectors. Panel

(a) is a short sequence of 3 consecutive PPI scans collected on 14 October 2013 by the REAL. The displayed

area is a close-up centered on the Doppler lidar (white marker) used for validation. The copper shading indicates

the intensity, in dB, of aerosol backscatter. A large aerosol feature is being advected south-east and passes over

the DL. Panel (b), and (c) show the velocity fields estimated by Typhoon (black arrows) from each pair of scans;

they were decimated by a factor of 6 along both dimensions for the sake of visualization. Measurements from

the DL (red arrows) at 100 m AGL show a good agreement with estimates, with a wind speed of ≈ 5.4 m s−1.
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FIG. 3. Distribution of days in terms of valid image SNR (Sec. 4.b) in a 50 m radius around DL location

(horizontal axis) versus mean wind speed measured by the DL at 100 m AGL (vertical axis), during daytime.

Days for which time-series are presented (Fig. 6, 7, 8) are represented with a black diamond. A total of 57 days

are considered, of which 9 have less than 60% valid SNRimg and are not visible here. The 15 days having more

than 85% valid SNRimg were investigated for the statistics shown in Fig. 9.
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FIG. 4. Wind field obtained by Typhoon 3 October 2013 at 18:45:07 UTC, superimposed on the first scan

of the pair used for estimation. Wind velocity was ≈ 14 m s−1. The motion field was decimated along both

dimensions by a factor of 24. The turquoise circle represents the cone section sampled by the DL during the

VAD scan.
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FIG. 5. Wind field obtained by Typhoon 23 October 2013 at 23:32:04 UTC, superimposed on the first scan of

the pair used for estimation. The upper panel shows a close up on a vortex of radius ≈ 200 m. The motion field

was decimated along both dimensions by a factor of 6 and 12 for the top and bottom panels, respectively. The

turquoise circle represents the cone section sampled by the DL during the VAD scan.
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FIG. 6. Times series of wind speed (top) and direction (bottom) as measured by the DL (blue) and estimated

by proposed method (orange), for a 12-hour period starting 23 October 2013 at 15:00 UTC (light wind case).

Light + markers are instantaneous values, darker lines are the 10-min rolling averages. The rapid change in

direction is the signature of the vortex presented in Fig. 5.
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FIG. 7. Times series of wind speed (top) and direction (bottom) as measured by the DL (blue) and estimated

by proposed method (orange), for a 12-hour period starting 17 September 2013 at 15:00 UTC (moderate wind

case). Light + markers are instantaneous values, darker lines are the 10-min rolling averages.
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FIG. 8. Times series of wind speed (top) and direction (bottom) as measured by the DL (blue) and estimated

by proposed method (orange), for a 12-hour period starting 9 October 2013 at 15:00 UTC (strong wind case).

Light + markers are instantaneous values, darker lines are the 10-min rolling averages.
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FIG. 9. Panels (a) and (b) are scatter plots of 10-min averaged wind components u and v measured by the DL at

100 m AGL (horizontal axis) versus estimated by Typhoon (vertical axis), combining the 15 days having > 85%

valid SNRimg during daytime (Fig. 3) – 892 points total. Panels (c) and (d) are the distribution of differences for

the same dataset.
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FIG. 10. Scatter plot of the TKE measured over 10-min intervals, by the DL at 100 m AGL (horizontal axis)

versus estimated by the proposed method (vertical axis) – 892 points total. The gray shading indicated the mean

wind speed measured over the interval. A linear regression (dashed line) gives a slope of 0.49 and offset of -0.03.
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FIG. 11. Illustration of the experimental design for the spatial validation of motion estimation vectors. Panel

(a) shows subsets of 2 consecutive PPI scans collected on 8 January 2014 by the REAL. The displayed area is

a close-up centered on the DL line-of-sight at 45◦ azimuth (dashed white line). The copper shading indicates

the intensity, in dB, of aerosol backscatter. A large aerosol feature is being advected north. Panel (b) shows the

velocity field (black arrows) estimated by Typhoon from these two scans; the vector field was decimated by a

factor of 15 along both dimensions for the sake of visualization. The color shading in the background indicates

the corresponding radial velocity. Panel (c) compares the radial velocities measured by the Doppler (black line)

and extracted from the 2-component field estimated by Typhoon (red line), along the DL line-of-sight.
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FIG. 12. Comparison of radial wind component at 45◦ azimuth and 2◦ elevation measured by the DL (top)

and estimated by proposed method (bottom), as a function of time (horizontal axis) and range (vertical axis), for

a 8-hour period starting 8 January 2014 at 17:00 UTC. Gray shading indicates missing or discarded data.

886

887

888

54



FIG. 13. Panel (a), scatter plot of 10-min averaged radial wind component measured by the DL (horizontal

axis) versus estimated by the proposed method (vertical axis). Color indicates the range, from blue (0.5 km) to

red (3 km). Panel (b), histogram of differences. Panel (c), slope of linear regression as a function of range. Panel

(d), R2 coefficient as a function of range. Dashed red lines indicate overall slope and R2 values.
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FIG. 14. Temporal spectra for stream-wise component us (left) and cross-stream component vn (right) obtained

by Typhoon (solid lines) and the DL (dashed lines). The shadings from light to dark gray correspond to wind

speed ranges of [0;4], [4;8], and [8;12] m s-1. The dotted line represents the -2/3 slope of the inertial subrange

predicted by theory.
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FIG. 15. Slices of 2D power spectral density (top) and corresponding transfer functions (bottom), for stream-

wise component u in the streamwise (a) and cross-stream (b) directions, and cross-wise component v in the

streamwise (c) and cross-stream (d) directions. The shadings from light gray to black correspond to wind speed

ranges of [0;4], [4;8], [8;12] and [12;16] m s-1. The dotted line represents the -2/3 slope of the inertial subrange

predicted by theory.
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