
Real-Time Wind Velocity Estimation from Aerosol Lidar Data using Graphics Hardware
Chris F. Mauzey Jen P. Lowe Shane D. Mayor

Purpose: Remote Measurement of the Wind by Lidar Application Algorithm

Discussion

References

Lidar
Receiver

Lidar Workstaion

GPU Workstation

Vectors/Flow

Filtering

Gridding

Cross Correlation

Data Acqusition
and

Broadcast

Display Workstation

Visualize Lidar Output

queue current
scan

previous
scan

Receive beams
and push them

onto queue

Process scans on
GPU

�ltering

gridding

cross
correlation

p(r1,Θ1)

p(r2,Θ1)
p(r2,Θ2)

p(r1,Θ2)

The REAL operates by transmitting pulses of
infrared laser radiation into the atmosphere
and measuring the backscatter along the
beam caused by aerosol[2]. This data is
processed by a workstation containing data
acquistion hardware. A beam of data consist
of evenly-spaced backscatter samples along
the range of the beam, along with acquistion
information such as azimuth and elevation
angle and time of shot. Each beam of data
received by the workstation is then
broadcasted as a datagram on a local area
network via UDP socket.

REAL can transmit pulses at a rate of 10Hz and
can sweep its beam stirring unit to form slice
pro�les of atmospheric aerosol backscatter.

WiFi Antenna

Ethernet Local Area Network

Warp
Filter

Windows Un�ltered Beam Data Filtered Beam Data

Extract
Tile

Extract
Tile

Histogram
Equalization

Histogram
Equalization

Using two scans, both recorded with the same
location, azimuth range, and elevation range but
at di�ernt times, we can estimate 2D wind
velocity with cross correlation. First, we extract a
tile from both aerosol pro�le grids at the same
location. Each tile then undergoes histogram
equalization to sharpen their signals. The tiles
then undergo normalized cross correlation where
they are mean-subtracted, and then have their
standard deviations calculated. We use fast
Fourier transforms to calculate the cross
correlation function (CCF).

prevTile -= mean(prevTile)
curTile -= mean(curTile)
CCF = iFFT(FFT(prevTile) * conj(FFT(curTile)))
CCF /= stddev(prevTile)*stddev(curTile)

The CCF’s peak value indicates displacement of
the features in the tiles, and with the known time
step of the scans the wind velocity can be
computed.

In our CUDA implementation, our kernels use one
thread block per tile for computing histogram
equalization, mean, and standard deviation. This
allows us to process many tiles simultaneously,
and the tiles in turn have their values computed
by multiple threads. We computed our FFTs
using the cuFFT library, leveraging the
cu�tPlanMany routine for batched computation
of wind vectors.

Beam data is arranged in a polar coordinate system with the REAL at the origin. To utilize our cross
correlation method, data must be in rectangular coordinates. We use bilinear interpolation to
approximate the value of a coordinate in a uniform rectangular grid with the four values of the polar
coordinate points it lies within; it interpolates along azimuth and range. In our CUDA implementation,
each thread block of the interpolation kernel works on a subsection of the rectangular grid, with each
thread working on an interpolant for a given rectangular coordinate.

Beam data undergoes low-pass and high-pass median �ltering to remove single-point outliers and
large scale features from the backscatter pro�le. We have implemented a median �lter utilizing the
Branchless Vectorize Median (BVM) algorithm by Marc Kachelriess[3]. BVM allows for the e�cient
�ltering of 1D data through SIMD processing. In our CUDA implementation, we �lter beams in batches
equal in number to the size of a warp of threads. Each thread has a “�lter window” that contains all of
the sorted values of the beam array within the range of the �lter, with the median value in the middle.
The thread slides this window across the array inserting values coming in and deleting the ones
coming out. The window is stored in the register memory of each thread to provide the lowest latency
possible. However, if the width of a �lter is too large to �t in register memory, then multiple warps are
used to distribute the window to multiple threads with communication between segments
maintained through shared memory.

Another workstation connected
to the local area network of lidar
installation is used to process
scans into wind vector �elds. It
runs a program implemented in
the Qt C++ framwork that uses
one thread for collecting beams
from the broadcast and another
to process the beams as scans for
wind velocity estimation. Beams
are transfered between threads
via a lock-free queue. The
algorithms used to process the
lidar data into wind velocity are
implemented with CUDA and
cuFFT.

This workstation contains one
Intel Xeon E3-1225, 4 GB of RAM,
and one nVidia Tesla C2050.

Normalized
Cross Correlation

p(r(x,y),Θ(x,y))

1. Mayor, S. D., J. P. Lowe, and C. F. Mauzey, 2012: Two-component horizontal aerosol motion vectors in the atmospheric surface layer
from a cross-correlation algorithm applied to elastic backscatter lidar data, Submitted 12/17/11 to J. Atmos. Ocean. Technol.

2. Mayor, S. D., S. M. Spuler, B. M. Morley, E. Loew, 2007: Polarization lidar at 1.54-microns and observations of plumes from aerosol
generators. Opt. Eng., 46, 096201.

3. Chen, W., M. Beister, Y. Kyriakou, and M. Kachelrieβ, 2009: High performance median filtering using commodity graphics hardware.
IEEE Nuclear Science Symposium Conference Program

Cross
Correlation
Function
(CCF)

Above: This �ow �eld was computed from data collected from the Canopy Horizontal Array Turbulence Study (CHATS) in the
spring of 2007 in Dixon, California.

The REAL is an atmospheric light detection and ranging (LIDAR) system. It produces near-horizontal and vertical cross-sectional
images of the lower atmosphere. The images reveal the spatial distribution of atmospheric aerosol (particulate matter). By
applying motion estimation algorithms to image sequences, two-dimensional vector wind �elds can be determined.

This method of remote wind measurement by lidar is very di�erent than the traditional approach that utilizes Doppler lidars.
Doppler lidars measure directly only one component of air motion by detecting the frequency shift of the backscattered laser
radiation. The approach we report in here has the advantage of producing two-component vector �ow �elds. Two components
are necessary for wind speed and direction and derived quantities and products such as divergence, vorticity, streamlines, and
pathlines. [1]

Above: The Raman-shifted Eye-safe Aerosol Lidar (REAL) at California State University Chico.

pathlines. [1]

Above: An example of 6 frames separated by 5 minutes each showing the movement of a sea-breeze front in Dixon, CA.
The REAL can produce such scans (nearly horizontal atmospheric cross-sections) every 15 s which drives the need to use GPUs

in order to compute vector �ow �elds in real-time.

Performance Test

 We performed a test that would compare the performance of a high-end CPU with a high-end GPU. After developing our code
using CUDA, we developed a CPU equivalent using the same Qt C++ framework as the GPU version but with OpenMP, SSE, and FFTW.
The machine that we ran this test on has an Intel Xeon X5680 6 core @ 3.33 GHz, 12 GB of RAM, and a nVidia Tesla C2050. We ran a test
case consisting of ~160 scans, each scan consisting of ~150 beams with each beam containing 7500 backscatter samples. It generates
a vector �eld over a 5km x 5km area with vectors space out every 50m, which produces ~5000 vectors. The timing charts presented
measure the execution time of the three major parts of the application in milliseconds.

0

10

20

30

40

50

60

70

80

90

100

Filtering

OpenMP+SSE

CUDA

0

20

40

60

80

100

120

Gridding

OpenMP

CUDA

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Wind Calculation

OpenMP+FFTW

CUDA+CUFFT

Future Considerations

 This application provides a framework that we can use for
other methods of calculating wind velocity from aerosol lidar
data. The computional performance of GPU will allow for more
calculations to be performed along side our current method, or
give us the ability run more compute-intensive methods in the
future.

This work was funded by Grant 0924407 of the National Science Foundation’s Physical and Dynamic Meteorology Program.

Please visit: http://phys.csuchico.edu/lidar/

California State University Chico, Department of Physics

