
Chico Measurement Campaign
Data Organization & Real-Time Processing

Pierre Dérian, Chris Mauzey

as of November 19, 2014

This document aims at describing the organization of the REAL data and the motion
estimates. The idea is to use an MySQL database to store information on and link scans,
estimates and sequences altogether. A Python framework supervises the data flow, motion
estimation, and provides tools for visualizations. Services are setup using Upstart to create
an autonomous, integrated system that handles data reception, motion estimation and
visualizations in real-time.

1

Contents

1 General concepts 3
1.1 Data flow . 3
1.2 Linking pieces together . 3

2 Description of MySQL tables 4
2.1 Locations . 4
2.2 Bscans . 4
2.3 Motions . 5
2.4 Sequences . 5

2.4.1 Cross-correlations . 6
2.4.2 Optical Flow . 6

2.5 House-Keeping . 7

3 Python framework 8
3.1 Incoming data: Bscans and HKs . 8
3.2 Motion estimators . 8
3.3 Visualizations . 8

3.3.1 Scans . 9
3.3.2 Motions . 10
3.3.3 Time-series . 10
3.3.4 Image loopers . 11

3.4 Structure of the Python toolbox . 11
3.4.1 CrossCorrEstim, BatchProcessing . 11
3.4.2 lidarIO . 11
3.4.3 lidarRunTime . 11
3.4.4 lidarAnalysis . 11
3.4.5 PyCudaTools . 11
3.4.6 Papers . 12

3.5 Required non-standard Python modules . 12

4 Upstart, towards an autonomous system 13

List of Figures

1 Detailed dataflow on aeolus . 14
2 MySQL tables connections . 15
3 Python file monitors . 15

2

1 General concepts

1.1 Data flow

Here is the basic flow of a scan file and the corresponding motion estimates:

(i) scan data is collected by real2 and stored as a single bscan file.

(ii) this bscan is then transferred to aeolus.

(iii) there, motion estimation will be performed by both CC (cross-correlations) and OF
(optic flow) if a previous scan is available.

(iv) results (NetCDF files) are finally written on aeolus file system.

(v) (optional) visualizations of scan and motion are created and made available, on
physics web server.

Figure 1 gives a more detailed overview of the situation.

Remark 1. real2 must be able to transfer data to aeolus. Dedicated user account with
limited permissions?

1.2 Linking pieces together

As the experiment lasts over several months, it is crucial to keep track of the recorded
and estimated data in a simple, efficient and flexible way. First, let us roughly define four
entities:

• each lidar location has its individual properties (latitude, longitude, etc.).

• each scan has its individual properties (type, location, date+time, duration, angles,
etc.).

• each motion estimate, whether CC or OF, corresponds to a pair of scan.

• a sequence is a collection of motion estimates sharing identical estimation parameters
(block size, regularization, ...).

Therefore, we propose to use an MySQL database of 7 tables to link scans, geographic
location, motion estimates and their parameters (sequence) together:

• one table which contains the geographic information of the scanning origin (i.e. the
location of the REAL);

3

• one table which contains the list of all scans;

• two tables, one for CC and one for OF which lists all estimates (of a given method)
and links them to their respective scan pair and sequence;

• two tables, one for CC and one for OF which lists all sequences and the associated
set of parameters.

• one table for the house-keeping files.

These tables and their connections are shown in Fig. 2.

2 Description of MySQL tables

[TODO] The whole database can be generated from the SQL file real lidar db.sql

located in MySQL/ directory of the SVN. The structure of each table is listed below,
as: column name; brief description; (data type).

Remark 2. Backscatter profiles are timed with sub-second precision. However, the
precision of the date/time objects used by MySQL is limited to the second. This
date/time information (in the database) is precise enough to sort scans, or to select
the scans over a given time range. It should not be used for precise timing ; instead
the complete date/time information should be read directly from the bscan.

2.1 Locations

id unique ID of the scanning origin’s location (int);

latitude latitdude of the scanning origin (double);

longitude longitude of the scanning origin (double);

altitude altitude (meters above sea level) of the scanning origin (double);

description a description of the REAL’s location (text);

2.2 Bscans

id unique ID of the scan (int);

path path to the bscan file (text);

location id ID of the scanning origin’s location (int);

4

type scan type (PPI, RHI or STARE) (enum);

start time date+time of the first record (datetime);

end time date+time of the last record (datetime);

start azimuth azimuth of the first record (degrees) (float);

end azimuth azimuth of the last record (degrees) (float);

start elevation elevation of the first record (degrees) (float);

end elevation elevation of the last record (degrees) (float);

num records number of records (int);

num ranges number of range samples per record (int);

range zero first range value (meters) (float);

range step distance between samples (meters) (float);

2.3 Motions

The two tables (CC, OF) are identical:

id unique ID of the estimate (int);

path path to the NetCDF file (text);

bscan0 id id of scan at time t0 (int);

bscan1 id id of scan at time t1 (int);

sequence id id of the sequence to which this scan belongs (int);

start time date+time of the first record in scan t0 (datetime);

end time date+time of the last record in scan t1 (datetime);

2.4 Sequences

Each estimator has its own set of parameters, so tables differ.

5

2.4.1 Cross-correlations

id the unique id of the sequence (int);

grid cell width length of sides of each square cell in the profile grid (meters) (float);

interrogation block width length of sides of each square tile extracted for cross
correlation (meters) (float);

vector spacing distance between vectors spaced out in a uniform rectangular grid
(meters) (float);

max scan radius maximum distance from the lidar to the edge of the scan (meters)
(float);

2.4.2 Optical Flow

id the unique id of the sequence (int);

num moment number of vanishing moment of the wavelet (int);

num decomposed number of scales considered (int);

num estimated number of scales estimated (int);

num initialized number of scales initialized, with the pyramid (int);

smooth kernel sigma value for the gaussian smoothing kernel [pixel] (float);

num pyramid step number of pyramid steps (int);

scale X scaling factor along X in the pyramid [%] (float);

scale Y scaling factor along Y in the pyramid [%] (float);

regularization regularization scheme (int);

alpha regularization regularization parameter alpha (float);

robust function robust M-estimator (int);

sigma robust robust parameter sigma (float);

dim X dimension of region of interest (ROI) along X [pixel] (int);

dim Y dimension of ROI along Y [pixel] (int);

offset X horizontal offset of ROI from top-left border [pixel] (int);

6

offset Y vertical offset of ROI from top-left border [pixel] (int);

cut values cut values before estimation (tinyint);

val min minimum value [signal unit] (float);

val max maximum value [signal unit] (float);

histogram correct histograms before estimation (int);

normalize values normalize values to [0;1] before estimation (tinyint);

2.5 House-Keeping

id ID of house keeping entry (int);

datestring Date and time of house keeping entry (datetime);

1 064 energy 1.064 energy (float);

1 544 energy 1.544 energy (float);

eff percent EFF % (float);

shots Number of shots (int);

cell temp Raman cell temperature (float);

cell pres Raman cell pressure (float);

lsr temp Laser temperature (float);

tbl temp Table temperature (float);

rm temp Room temperature (float);

fl shots Flashlamp shots (int);

fl volts Flashlamp voltage (float);

long ang Long ang (double);

trans ang Trans ang (double);

ups power UPS power (double);

centx loc CentX loc (double);

7

centy loc CentY loc (double);

radius Radius (double);

process length Process Length (double);

location id ID of current location of REAL (int);

3 Python framework

3.1 Incoming data: Bscans and HKs

Incoming data consists of bscans and house-keeping files (HKs). These files are
regularly transferred to aeolus by SFTP to a temporary directory REAL sftp. Two
python scripts (one for bscans, another one for HKs) monitor this directory. Their
role is to record the new files into the appropriate tables of the database, and to move
them from REAL sftp to their destination in REAL bscans or REAL house keeping.
Figure 3 illustrates this process.

3.2 Motion estimators

3.3 Visualizations

The Python Toolbox provides a few high-level visualization tools wich can be used
for both post-processing and real-time. Note that these tools cannot possibly handle
every situation; for the most specific cases custom versions should be developped
from the low-level modules – See Sect. 3.4.

Remark 3. For interactive, on-screen display to be available with --show, a valid
$DISPLAY must be set – either a monitor or X-redirection through SSH. Otherwise,
image-file export only is allowed. Note that using interactive display through network
(SSH) can be fairly slow if the bandwith does not keep up and/or as the complexity
of the plot increases.

Remark 4. In the following, date-time arguments are specified in UTC,1 following
the format “year-month-day hour:min:sec”, e.g. "2013-03-02 01:18:22".

Remark 5. When file transfer to distant directory is available, SSH authentication
based on public-private keys2 must be available for the given user. Password-based
authentication is NOT possible.

1universal time coordinates - http://en.wikipedia.org/wiki/Coordinated Universal Time.
2See http://en.wikipedia.org/wiki/Secure Shell#Definition.

8

http://en.wikipedia.org/wiki/Coordinated_Universal_Time
http://en.wikipedia.org/wiki/Secure_Shell#Definition

3.3.1 Scans

Scans can be visualized, either on-screen (interactive, see Rem. 3) or by PNG images
(static) using viewScan.py script. The main modes are:

• Single scan, with database: picks the first scan after given date (see Rem. 4),
-tmin DATETIME.

• Sequence of scan, with database: scans comprised between two dates,
-tmin DATETIME_MIN -tmax DATETIME_MAX.

• Real-time visualization, with database,
--standby.

• Single scan, from bscan file,
-s PATH/TO/BSCAN.

Scans of a given type only (PPI, RHI) can be selected with -t SCANTYPE. The local
directory where images will be written is given with -o PATH. If omitted, no out-
put. A distant directory can be specified with -do LOGIN@HOST:DISTANT_PATH – see
Rem. 5. Various options modify scan aspect (e.g., domain, units, grid, colors, range
of data). In particular, --no-filter disables median filtering. The resolution of
output images is controled by --style STYLE. By default, a web-compatible image
is generated. Other choices include ‘720p’ for HD-ready, ‘1080p’ for full-HD, ‘print’
for print-compatible resolution.

Typical work run: basic on-screen display of a single PPI scan at a given time, no
file output.

python viewScan.py -t PPI --show -tmin "2013-10-23 23:30:31"

Typical post-processing run: a 1-hour, full-HD sequence of unfiltered RHIs, with
constrainted domain, units in km and custom data range.

python viewScan.py -t RHI --no-filter --km --clim 33.0 45.0 \

-xmin 0 -ymin 0 -xmax 5000 -ymax 2500 \

-o /tmp --style 1080p \

-tmin "2009-09-10 14:30:00" -tmax "2009-09-10 15:30:00"

Typical real-time run: PPIs only, with (image) SNR, local time, grid and rings,
and transfer to remote server.

python viewScan.py --standby -t PPI --grid --ring --ptz \

--snr --imgsnr -o /tmp -do LOGIN@physics.csuchico.edu:/tmp

9

3.3.2 Motions

3.3.3 Time-series

Time-series of wind speed and direction and their rolling means can be plotted using
liveSeries.py script. The script can handle up to three series simultaneously among
OF, CC and Doppler (when available). It works both for real-time analysis or post-
processing. Note that on-screen display is not available at the moment, only PNG
images output. The main parameters are:

• --OFseqID ID, --CCseqID ID the ID number, in the database, of the motion
sequence for optic flow and/or cross-correlations, respectively.

• -x0 X, -y0 Y the coordinates (X, Y) for where OF, CC estimates are probed,
in [meter]. Make sure these coordinates belong to the scan domain! By default,
they point to the Doppler location (382, 1475).

• --doppler enable display of Doppler data, if available.

• -heigh HEIGHT the height in [meter] of Doppler data.

• --start DATETIME the beginning of the time-series. If omitted, starts at cur-
rent time and enables real-time display.

• --span SPAN the length of the time-series, in hours.

• -localOut LOCAL_FILE.PNG, -distantOut DISTANT_DIR the local file and op-
tionally distant file (see Rem. 5).

• --coherenceCheck discards outliers based on temporal coherence. Very effi-
cient with isolated outliers.

• --style "stat" makes a scatter plot of instantaneous speed and direction
values instead of time-series. Note that it requires 2 series.

Other options include the length of time-averaging window, the radius of space av-
eraging area, other plotting styles, etc.

Typical post-processing run: a 10-hour period of OF and Doppler, in UTC, with
outliers removal:

python liveSeries.py --OFseqID 59 --doppler --coherenceCheck \

--start "2013-09-17 16:00:00" --span 10 \

-localOut /tmp/series_20130917-160000_OF-Doppler.png

10

Typical real-time run: display OF and CC estimates at (x, y) = (1000, 1000) m
for the last 12 hours, in local time (PTZ), transfer to remote server. In this mode,
the script runs continuously and checks periodically for new data points. If any,
the image is updated and saved. The script has to be stopped manually (CTRL-C,
kill).

python liveSeries.py --OFseqID 10 --CCseqID 21 \

-x0 1000 -y0 1000 --span 12 --ptz \

-localOut /tmp/liveseries_OF-CC.png \

-distantOut LOGIN@physics.csuchico.edu:/tmp

3.3.4 Image loopers

3.4 Structure of the Python toolbox

3.4.1 CrossCorrEstim, BatchProcessing

3.4.2 lidarIO

3.4.3 lidarRunTime

It also contains scripts used on aeolus for input data management during real-time
operations (Sec. 3.1):

bscan monitor.py handles bscan files from real2;

hk monitor.py handles house-keeping files from real2;

csm monitor.py handles CSM files from the Streamlines doppler lidar.

It also contains scripts used for visualizations, including during real-time operations:

viewScan.py visualize scans (Sec. 3.3.1);

viewMotion.py visualize wind fields (Sec. 3.3.2);

liveSeries.py time-series of wind speed and direction (Sec. 3.3.3);

pngMonitor.py scan visualizations for PPI, RHI loopers on physics (Sec. 3.3.4);

updateWebVisDB.py updates the CC data on physics for the Wind Visualization
webapp;

updateOFWebVisDB.py updates the OF data on physics for the Wind Visualiza-
tion webapp.

11

3.4.4 lidarAnalysis

3.4.5 PyCudaTools

This directory contains CUDA kernels and PyCuda interface modules:

CuMedianFilter low-pass and high-pass median filtering for scan pre-processing;

CuPolarToRect polar to cartesian interpolation on regular grids ;

CuScatteredInterp nearest-neighbor interpolation for scattered data;

CuScanSNR image SNR computation.

Test/demo scripts are provided as well.

3.4.6 Papers

This directory contains scripts created (or adapted) specifically for a given pa-
per/poster: AMS BLT 2014, JTECH on wavelets, cross-correlations, Chico experi-
ment, . . .

3.5 Required non-standard Python modules

The modules listed below are not part of the Python Standard Library, they must
be installed in order to use the framework detailed above. Most of these modules are
shipped with Python distributions such as ActivePython or Anaconda. Others can
be installed by pip, or manually.

Matplotlib provides Matlab-like plotting and visualization capabilities.
http://matplotlib.org/

Mysql.connector for connections to MySQL database.
http://dev.mysql.com/downloads/connector/python/

NetCDF4 enables to handle NetCDF files.
https://code.google.com/p/netcdf4-python/

Numpy is the fundamental package for scientific computing.
http://www.numpy.org/

PyCuda is a CUDA wrapper for Python.
http://mathema.tician.de/software/pycuda/

PyEphem to compute sunset, sunrise times.
http://rhodesmill.org/pyephem/

12

http://matplotlib.org/
http://dev.mysql.com/downloads/connector/python/
https://code.google.com/p/netcdf4-python/
http://www.numpy.org/
http://mathema.tician.de/software/pycuda/
http://rhodesmill.org/pyephem/

Pytz to deal with time zones conversions.
http://pytz.sourceforge.net/

Scipy is a scientific library for advanced computations (e.g. filtering).
http://www.scipy.org/

4 Upstart, towards an autonomous system

Ideally, the acquisition-processing-visualization system deployed for real-time oper-
ations (currently on aeolus) must be as autonomous as possible. In particular, it
should handle the following situations automatically, without human intervention:

• be available as the system starts (typically after a reboot);

• maintain the critical mission;

• recover from crashes.

The critical mission is the reception, registration in database and direction of in-
coming bscans (and optionally, HKs), since the rest of the framework relies on the
information provided by the database (and the expected location of files). These
tasks are supervised by monitor scripts (Sec. 3.1), they require the network and
mysql services to be running. For now, the other tasks (motion estimation, all kinds
of visualizations) are secondary. As long as the critical mission is maintained, they
can be stopped and resumed anytime.

In the current deployment, points listed above are handled by creating services
(a.k.a. jobs) using Upstart:3

“Upstart [. . .] handles starting of tasks and services during boot, stopping
them during shutdown and supervising them while the system is running.”

Upstart relies on Job Configuration Files that describes, for each job, things such as
what to do and under what conditions. Typically, in our context, these elements are:

• start when mysql, network are running;

• respwan (restart) after a crash (up to a maximum number of times);

• set-up the environment (output directories, logs, . . .);

3http://upstart.ubuntu.com/

13

http://pytz.sourceforge.net/
http://www.scipy.org/
http://upstart.ubuntu.com/

• finally run the Python script with adequate parameters.

Examples of configuration files can be found in the Upstart/ directory of the SVN
repository for the Python scripts used during real-times operations. These files are to
be placed in the $HOME/.init directory of the user in charge of running the services.

14

S
FT

P

H
K

s

b
sc

a
n
s

m
o
ti

o
n
s

F
il
e
 S

y
s
te

m
m

o
n

it
o
rs

h
k_

m
o
n
it

o
r

b
sc

a
n
_m

o
n
it

o
r

..
.

e
s
ti

m
a
to

rs

cr
o
ss

-c
o
rr

e
la

ti
o
n
s,

o
p
ti

ca
l-

fl
o
w

v
is

u
a
li
z
e
rs

v
ie

w
S
ca

n

v
ie

w
M

o
ti

o
n

liv
e
S
e
ri

e
s

u
p
d
a
te

W
e
b
V

is
D

B

..
.

P
y
th

o
n

 S
c
ri

p
ts

H
K

s

b
sc

a
n
s

m
o
ti

o
n
s

se
q
u
e
n
ce

s
(p

a
ra

m
e
te

rs
)

M
y
S

Q
L
 D

a
ta

b
a
s
e

lo
ca

ti
o
n
s

w
e
b
 i
n
te

rf
a
ce

 (
p
h
p
M

y
A

d
m

in
)

P
H

P
 q

u
e
ri

e
s

fr
o
m

 w
e
b
si

te

re
a
d

w
ri
te

S
FT

P
 t

ra
n
sf

e
r

fr
o
m

 r
e
a
l2 S

C
P
 t

ra
n
sf

e
r

to
 p

h
y
si

cs
fo

r
w

e
b
si

te

in
se

rt

fe
tc

h

n
e
tw

o
rk

d
is

k
I/
O

M
y
S

Q
L

q
u

e
ry

d
a
ta

b
a
se

 l
in

k

D
a
ta

 F
lo

w
 o

n
 A

e
o
lu

s
a
s

o
f

S
p

ri
n

g
 2

0
1

4

n
o
te

:
e
a
ch

 e
st

im
a
ti

o
n
 m

e
th

o
d
 h

a
s

it
s

o
w

n
 m

o
ti

o
n
s

d
ir

e
ct

o
ry

in

th

e

fi
le

sy

st
e
m

,
m

o
ti

o
n
s

a
n
d

se
q
u
e
n
ce

s
ta

b
le

s
in

th

e

d
a
ta

b
a
se

.
O

n
e
 o

n
ly

 i
s

re
p
re

se
n
te

d
 h

e
re

 f
o
r

th
e
 s

a
ke

 o
f

cl
a
ri

ty
.

F
ig

u
re

1:
D

a
ta

fl
ow

o
n
a
e
o
lu
s,

sh
ow

in
g

th
e

3
co

m
p

on
en

ts
:

fi
le

sy
st

em
,

P
y
th

o
n

fr
a
m

ew
o
rk

,
M

y
S

Q
L

d
a
ta

b
as

e.

15

bscans

OF motions

CC motions

CC sequences

OF sequences

bID-0

bID-1

bID-0

bID-1 sID

sID

locations lIDhouse-keeping lID

Figure 2: Schema of the 7 SQL tables. bID stands for bscan-ID, LID for location-ID, and
sID for sequence-ID.

REAL_sftp
sftp transfer
from lidar2

watch for incoming bscans:

+read bscan properties
+compute its destination
 YYYYMM/YYYYMMDD/
 from the start date
+create destination path
 if necessary
+move bscan to destination
+insert bscan into database

REAL_bscans

bscanMonitor.py

bscan
file

any bscan?

bscan
properties

bscans table

watch for incoming HKs:

+read HK properties
+compute its destination
 YYYYMM/YYYYMMDD/
 from the start date
+create destination path
 if necessary
+move HK to destination
+insert HK into database

REAL_house_keeping

hkMonitor.py

HK
file

lidar_house_keeping
table

any HK?

HK
properties

aeolus

Real_lidar_db
SQL database

Figure 3: Schema of the input data process, showing the two monitoring scripts watching
directory REAL sftp and processing incoming bscan and HK files.

16

	General concepts
	Data flow
	Linking pieces together

	Description of MySQL tables
	Locations
	Bscans
	Motions
	Sequences
	Cross-correlations
	Optical Flow

	House-Keeping

	Python framework
	Incoming data: Bscans and HKs
	Motion estimators
	Visualizations
	Scans
	Motions
	Time-series
	Image loopers

	Structure of the Python toolbox
	CrossCorrEstim, BatchProcessing
	lidarIO
	lidarRunTime
	lidarAnalysis
	PyCudaTools
	Papers

	Required non-standard Python modules

	Upstart, towards an autonomous system

